Cuts and Connectivity in Graphs and Hypergraphs

Chao Xu

March 12, 2018

University of Illinois, Urbana-Champaign

Remove min number of edges to disconnect s from t.

Remove min number of edges to disconnect s from t.

Remove min number of edges to disconnect some pair of vertices.

Remove min number of edges to disconnect some pair of vertices.

Problem: Min st-cut

Input: G = (V, E) and $s, t \in V$

Output: A 2-partition (S, T) of the vertices V, such that $s \in S$,

 $t \in T$, and the number of edges crossing S is minimized.

Problem: Min-cut

Input: G = (V, E)

Output: A 2-partition (S, T) of the vertices V, such that the number of edges crossing S is minimized.

Min *st*-cut problem is the fixed-terminal variant of min-cut problem, the global variant.

Problem: Min st-cut

Input: G = (V, E) and $s, t \in V$

Output: A 2-partition (S, T) of the vertices V, such that $s \in S$,

 $t \in T$, and the number of edges crossing S is minimized.

Problem: Min-cut

Input: G = (V, E)

Output: A 2-partition (S, T) of the vertices V, such that the number of edges crossing S is minimized.

Min *st*-cut problem is the fixed-terminal variant of min-cut problem, the global variant. The value of the min-cut is also called the (edge) connectivity, denoted λ .

- Disconnect railroad networks,
- Maximum cardinality bipartite matching,
- Image segmentation,
- ...

- Finding a min-cut reduces to finding min-*st*-cut for each pair of *s* and *t*.
- $\tilde{O}(mn)$ time: Maximum adjacency ordering. [Stoer-Wagner 95].
- $\tilde{O}(m)$ time (randomized). [Karger 98]
- $\tilde{O}(m)$ time (simple, unweighted). [Kawarabayashi-Thorup 15, Henzinger-Rao-Wang 17]

- Efficient algorithms for min-cut and its generalizations in graphs and hypergraphs.
- Understand the complexity difference between global and fixed-terminal variants.

- Efficient algorithms for min-cut and its generalizations in graphs and hypergraphs.
- Understand the complexity difference between global and fixed-terminal variants.
- Algorithms for hypergraph min-cut.
- Approximation for bicut.
- Hypergraph k-cut.
- Minimum violation.

Algorithms for hypergraph min-cut

A hypergraph

A hypergraph H = (V, E) consists of vertices V and edges E.

Cut function

- $\delta_H(S)$ is the set of all edges cross S
- The cut function $c: 2^V \to \mathbb{N}$

$$c_H(S) = |\delta_H(S)|$$

 A set of vertices Ø ⊊ S ⊊ V is a min-cut if c_H(S) is minimized.

• a natural generalization of graphs

. . .

- element connectivity [Chekuri-Rukkanchanunt-X 16]
- real life applications: VLIS, security, data mining, chemistry

12

- Find a min-cut.
- Find all min-cuts.
- Find a $(1 + \epsilon)$ -approximate min-cut.

	unweighted		weighted	
Problem	graph	hypergraph	graph	hypergraph
Min-cut	$O(m + \lambda n^2)$	$O(p + \lambda n^2)$	$\tilde{O}(mn)$	$\tilde{O}(pn)$
all min-cuts	$O(m + \lambda n^2)$	$O(p + \lambda n^2)$	$\tilde{O}(mn)$	$ ilde{O}(pn)$
$(1+\epsilon)$ -min-cut	-	-	$O(m + n^2/\epsilon^2)$	$O(p+n^2r^4/\epsilon^2)$

- n: # vertices.
- m: # edges.
- *p*: sum of the cardinality of the edges.
- λ : value of a min-cut.
- r: the rank.

Algorithms for hypergraph min-cut

Min-cut in unweighted hypergraphs

- 1. Find a sparse subgraph with $O(\lambda n)$ edges that preserves the min-cut in O(m) time.
- 2. Apply the O(mn) min-cut algorithm on the sparse subgraph.

Total running time: $O(m + \lambda n^2)$

Subgraph H' a k-certificate of H if for all $S \subseteq V$

 $c_{H'}(S) \geq \min(c_H(S), k).$

Subgraph H' a *k*-certificate of H if for all $S \subseteq V$

 $c_{H'}(S) \geq \min(c_H(S), k).$

Example: a spanning tree is a 1-certificate of a connected graph.

Subgraph H' a k-certificate of H if for all $S \subseteq V$

 $c_{H'}(S) \geq \min(c_H(S), k).$

Example: a spanning tree is a 1-certificate of a connected graph.

Theorem ([Nagamochi-Ibaraki 92])

A graph has a k-certificate with O(kn) edges, and can be found in O(m) time.

• finding the connectivity.

- finding the connectivity.
- spanning tree packing. [Gabow 98]

- finding the connectivity.
- spanning tree packing. [Gabow 98]
- sketching in dynamic graph streams. [Guha-McGregor-Tench 15]

- finding the connectivity.
- spanning tree packing. [Gabow 98]
- sketching in dynamic graph streams. [Guha-McGregor-Tench 15]
- $(1 + \epsilon)$ -approximate min-cut.

- 1. Find a λ -certificate.
- 2. Apply the O(pn) min-cut algorithm on the λ -certificate.

- 1. Find a λ -certificate.
- 2. Apply the O(pn) min-cut algorithm on the λ -certificate.

Theorem ([Guha-McGregor-Tench 15])

Every hypergraph has a k-certificate with O(kn) edges(each edge can contain $\Omega(n)$ vertices) and can be found in O(kp) time.

- 1. Find a λ -certificate.
- 2. Apply the O(pn) min-cut algorithm on the λ -certificate.

Theorem ([Guha-McGregor-Tench 15])

Every hypergraph has a k-certificate with O(kn) edges(each edge can contain $\Omega(n)$ vertices) and can be found in O(kp) time.

Running time $O(\lambda p + \lambda n^3)$.

Theorem ([Chekuri-X 17])

Every hypergraph has a k-certificate with size O(kn), and can be found in O(p) time.

Theorem ([Chekuri-X 17])

Every hypergraph has a k-certificate with size O(kn), and can be found in O(p) time.

Consequence: $O(p + \lambda n^2)$ time algorithm for finding a min-cut.

Algorithms for hypergraph min-cut

All min-cuts

Find a small (O(n)-size) data structure that can quickly enumerate/count the number of min-cuts.

A graph(hypergraph) G' = (V', E') is a representation of G = (V, E), if there exists a function $\phi : V \to V'$ such that

- 1. S' is a min-cut in G' iff $\phi^{-1}(S')$ is a min-cut in G.
- 2. S is a min-cut in G, iff $\phi(S)$ is a min-cut in G'.

Graphs: Finding all min-cuts

A cactus is a graph in which any two cycles are edge disjoint. **Theorem ([Dinitz et. al. 76, Karzanov & Timofeev 86])** For each graph G there exist a representation G' where G' is a cactus.

A cactus representation can be found

- in $\tilde{O}(nm)$ time [Nagamochi et. al. 03]
- in (randomized) $\tilde{O}(m)$ time [Karger & Panigrahi 09]

Hypergraphs: Finding all min-cuts

Theorem ([Cheng 99, Fleiner & Jordan 99])

For each hypergraph H there exist a representation H' where H' is a hypercactus.
Hypergraphs: Finding all min-cuts

Theorem ([Cheng 99, Fleiner & Jordan 99])

For each hypergraph H there exist a representation H' where H' is a hypercactus.

Expensive to construct, in the order of $O(n^4p)$.

A hypercactus representation can be found in $\tilde{O}(np)$ time.

A hypercactus representation can be found in $\tilde{O}(np)$ time.

Approach: Using the decomposition framework [Cunningham 93].

A hypercactus representation can be found in $\tilde{O}(np)$ time.

Approach: Using the decomposition framework [Cunningham 93]. Matches the result in graphs. Conceptually simpler algorithm.

Algorithms for hypergraph min-cut

 $(1 + \epsilon)$ -approximate min-cut

S is a $(1 + \epsilon)$ -approximate min-cut if $c(S) \leq (1 + \epsilon)\lambda$.

S is a $(1 + \epsilon)$ -approximate min-cut if $c(S) \leq (1 + \epsilon)\lambda$.

- 1. Find a sparse subgraph that approximately preserves all min-cuts.
- 2. Find a min-cut in the sparse subgraph.

A graph G is a $(1 \pm \epsilon)$ -cut-sparsifier of H if $(1 - \epsilon)c_G(A) \le c_H(A) \le (1 + \epsilon)c_G(A)$ for all $A \subseteq V$.

A graph G is a $(1 \pm \epsilon)$ -cut-sparsifier of H if $(1 - \epsilon)c_G(A) \le c_H(A) \le (1 + \epsilon)c_G(A)$ for all $A \subseteq V$. Theorem ([Benczúr-Karger 98])

There exists a $(1 \pm \epsilon)$ -cut-sparsifier of $\tilde{O}(\frac{n}{\epsilon^2})$ edges, and can be constructed in $\tilde{O}(m)$ time with high probability.

A graph G is a $(1 \pm \epsilon)$ -cut-sparsifier of H if $(1 - \epsilon)c_G(A) \le c_H(A) \le (1 + \epsilon)c_G(A)$ for all $A \subseteq V$. Theorem ([Benczúr-Karger 98])

There exists a $(1 \pm \epsilon)$ -cut-sparsifier of $\tilde{O}(\frac{n}{\epsilon^2})$ edges, and can be constructed in $\tilde{O}(m)$ time with high probability.

Consequence: A $(1 + \epsilon)$ -approximate min-cut can be found in $\tilde{O}(m + \frac{n^2}{\epsilon^2})$ time.

A graph G is a $(1 \pm \epsilon)$ -cut-sparsifier of H if $(1 - \epsilon)c_G(A) \le c_H(A) \le (1 + \epsilon)c_G(A)$ for all $A \subseteq V$. Theorem ([Benczúr-Karger 98])

There exists a $(1 \pm \epsilon)$ -cut-sparsifier of $\tilde{O}(\frac{n}{\epsilon^2})$ edges, and can be constructed in $\tilde{O}(m)$ time with high probability.

Consequence: A $(1 + \epsilon)$ -approximate min-cut can be found in $\tilde{O}(m + \frac{n^2}{\epsilon^2})$ time. Near-linear time when graph is dense.

Theorem ([Kogan-Krauthgamer 14])

There exists a $(1 \pm \epsilon)$ -cut-sparsifier of $\tilde{O}(\frac{nr}{\epsilon^2})$ edges, and can be constructed in $\tilde{O}(n^2p)$ time with high probability.

Theorem ([Kogan-Krauthgamer 14])

There exists a $(1 \pm \epsilon)$ -cut-sparsifier of $\tilde{O}(\frac{nr}{\epsilon^2})$ edges, and can be constructed in $\tilde{O}(n^2p)$ time with high probability.

Too slow.

A $(1 \pm \epsilon)$ -cut-sparsifier of H with $\tilde{O}(nr^2/\epsilon^2)$ edges can be found in $\tilde{O}(p)$ time with high probability.

A $(1 \pm \epsilon)$ -cut-sparsifier of H with $\tilde{O}(nr^2/\epsilon^2)$ edges can be found in $\tilde{O}(p)$ time with high probability.

Consequence: $\tilde{O}(p + n^2 r^4 / \epsilon^2)$ algorithm for $(1 + \epsilon)$ -approximate min-cut in hypergraphs.

A $(1 \pm \epsilon)$ -cut-sparsifier of H with $\tilde{O}(nr^2/\epsilon^2)$ edges can be found in $\tilde{O}(p)$ time with high probability.

Consequence: $\tilde{O}(p + n^2 r^4/\epsilon^2)$ algorithm for $(1 + \epsilon)$ -approximate min-cut in hypergraphs. $\tilde{O}(p + n^2/\epsilon^2)$ for constant rank hypergraphs.

A $(1 \pm \epsilon)$ -cut-sparsifier of H with $\tilde{O}(nr^2/\epsilon^2)$ edges can be found in $\tilde{O}(p)$ time with high probability.

Consequence: $\tilde{O}(p + n^2 r^4/\epsilon^2)$ algorithm for $(1 + \epsilon)$ -approximate min-cut in hypergraphs. $\tilde{O}(p + n^2/\epsilon^2)$ for constant rank hypergraphs.

Near-linear time when the hypergraph is dense.

Summary: Fast hypergraph cut algorithms that match their state-of-the-art graph counterparts.

Min-cut in directed graphs: Bicut

- st-bicut: A set of edges such that its removal disconnect s and t in both direction.
- bicut: A *st*-bicut for some *s* and *t*.

A special case of multicut in directed graphs.

- Trivial 2-approximation. Union of min-*st*-cut and min-*ts*-cut [Dahlhaus et. al. 1994].
- $(2-\epsilon)$ -inapproximable under UGC. [Chekuri & Madan 16, Lee 16]

It is not known if computing bicut is NP-hard.

It is not known if computing bicut is NP-hard. **Theorem ([Bérczi-Chandrasekaran-Király-Lee-X 17])** $A (2 - \delta)$ -approximation exists for min-bicut, where $\delta = \frac{1}{448}$.

- It is not known if computing bicut is NP-hard.
- **Theorem ([Bérczi-Chandrasekaran-Király-Lee-X 17])** A $(2 - \delta)$ -approximation exists for min-bicut, where $\delta = \frac{1}{448}$. A hardness separation between fixed-terminal and global bicut!

A and B are uncomparable if $A \setminus B \neq \emptyset$ and $B \setminus A \neq \emptyset$.

Theorem

The min-bicut problem is equivalent to two uncomparable sets $A, B \subseteq V$ with minimum $|\delta^{in}(A) \cup \delta^{in}(B)|$.

A and B are uncomparable if $A \setminus B \neq \emptyset$ and $B \setminus A \neq \emptyset$.

Theorem

The min-bicut problem is equivalent to two uncomparable sets $A, B \subseteq V$ with minimum $|\delta^{in}(A) \cup \delta^{in}(B)|$.

Approach: Find multiple relaxations such that one of them is a $(2 - \delta)$ -approximation.

A and B are uncomparable if $A \setminus B \neq \emptyset$ and $B \setminus A \neq \emptyset$.

Theorem

The min-bicut problem is equivalent to two uncomparable sets $A, B \subseteq V$ with minimum $|\delta^{in}(A) \cup \delta^{in}(B)|$.

Approach: Find multiple relaxations such that one of them is a $(2 - \delta)$ -approximation.

Example: Find uncomparable sets A and B such that $|\delta^{in}(A)|+|\delta^{in}(B)|$ is minimized. If it is not a $(2-\delta)$ -approximation, then most edges in the optimal bi-cut are going into $A \cap B$.

Summary: A hardness gap between global and fixed-terminal bicut.

k-cut in hypergraphs

Problem: Min *k*-way cut

Input: G and $v_1, \ldots, v_k \in V(G)$ **Output:** A k-partition (V_1, \ldots, V_k) , such that $v_i \in V_i$ for all i, and the number of edges crossing the partition classes is minimized.

A min-k-cut is the minimum over all k-way-cut.

• Min k-way-cut is hard for $k \ge 3$. [Dahlhaus et. al. 94]

- Min k-way-cut is hard for $k \ge 3$. [Dahlhaus et. al. 94]
- Min k-cut. Multiple polynomial time algorithms!
 - Fix a partition class: $n^{\Theta(k^2)}$ [Goldschmidt-Hochbaum 94].
- Min k-way-cut is hard for $k \ge 3$. [Dahlhaus et. al. 94]
- Min k-cut. Multiple polynomial time algorithms!
 - Fix a partition class: $n^{\Theta(k^2)}$ [Goldschmidt-Hochbaum 94].
 - Randomized contraction: $\tilde{O}(n^{2(k-1)})$ [Karger-Stein 96].

- Min k-way-cut is hard for $k \ge 3$. [Dahlhaus et. al. 94]
- Min k-cut. Multiple polynomial time algorithms!
 - Fix a partition class: $n^{\Theta(k^2)}$ [Goldschmidt-Hochbaum 94].
 - Randomized contraction: $\tilde{O}(n^{2(k-1)})$ [Karger-Stein 96].
 - Divide and conquer: O(n^{(4+o(1))k}) [Kamidoi-Yoshida-Nagamochi 07].
 - Divide and conquer: $O(n^{(4-o(1))k})$ [Xiao 08].

- Min k-way-cut is hard for $k \ge 3$. [Dahlhaus et. al. 94]
- Min k-cut. Multiple polynomial time algorithms!
 - Fix a partition class: $n^{\Theta(k^2)}$ [Goldschmidt-Hochbaum 94].
 - Randomized contraction: $\tilde{O}(n^{2(k-1)})$ [Karger-Stein 96].
 - Divide and conquer: O(n^{(4+o(1))k}) [Kamidoi-Yoshida-Nagamochi 07].
 - Divide and conquer: $O(n^{(4-o(1))k})$ [Xiao 08].
 - Tree packing: $\tilde{O}(n^{2k})$ [Thorup 08].

What about hypergraphs?

- Min k-way-cut is hard for $k \ge 3$.
- Min *k*-cut.
 - k = 2: Hypergraph cut.

- Min k-way-cut is hard for $k \ge 3$.
- Min k-cut.
 - k = 2: Hypergraph cut.
 - k = 3: Deterministic contraction [Xiao 08].

- Min k-way-cut is hard for $k \ge 3$.
- Min *k*-cut.
 - k = 2: Hypergraph cut.
 - k = 3: Deterministic contraction [Xiao 08].
 - Constant rank: Hypertree packing [Fukunaga 10].

- Min k-way-cut is hard for $k \geq 3$.
- Min *k*-cut.
 - k = 2: Hypergraph cut.
 - k = 3: Deterministic contraction [Xiao 08].
 - Constant rank: Hypertree packing [Fukunaga 10].

Main question: Hypergraph k-cut for $k \ge 4$ in arbitrary rank hypergraphs?

Fixed-terminal vs. global complexity gap?

Theorem ([Chandrasekaran-X-Yu 18])

There exists a randomized polynomial time algorithm that finds a minimum k-cut in a hypergraph.

Theorem ([Chandrasekaran-X-Yu 18])

There exists a randomized polynomial time algorithm that finds a minimum k-cut in a hypergraph.

Approach:

Randomized contraction algorithm with dampened sampling.

Theorem ([Chandrasekaran-X-Yu 18])

There exists a randomized polynomial time algorithm that finds a minimum k-cut in a hypergraph.

Approach:

Randomized contraction algorithm with dampened sampling.

Theorem ([Chandrasekaran-X-Yu 18]) There are $O(n^{2(k-1)})$ distinct min-k-cuts in a hypergraph. Summary: There is a global vs. fixed-terminal complexity gap for hypergraph *k*-cut.

Minimum violation

Violation

A map from G = (V, E) to H = (U, F) is a function $f : V \to U$.

H is the pattern graph.

An edge $uv \in E$ is a violating edge, if $f(u)f(v) \notin F$.

The violation of f is the number of violating edges.

Violation

A map from G = (V, E) to H = (U, F) is a function $f : V \to U$.

H is the pattern graph.

An edge $uv \in E$ is a violating edge, if $f(u)f(v) \notin F$.

The violation of f is the number of violating edges.

Violation

A map from G = (V, E) to H = (U, F) is a function $f : V \to U$.

H is the pattern graph.

An edge $uv \in E$ is a violating edge, if $f(u)f(v) \notin F$.

The violation of f is the number of violating edges.

Minimum violation retraction. RVio(H)

Input: graph G and a bijection $f': V' \to U$ for some $V' \subseteq V(G)$ **Output:** A map f from G to H such that $f|_{V'} = f'$ and the violation is minimized.

Vertices in V' are fixed vertices.

Minimum violation retraction. RVio(H)

Input: graph G and a bijection $f': V' \to U$ for some $V' \subseteq V(G)$ **Output:** A map f from G to H such that $f|_{V'} = f'$ and the violation is minimized.

Vertices in V' are fixed vertices.

H is **r-tractable** if **RVio**(*H*) is tractable.

Problem: Min *k*-way cut

Input: G and $v_1, \ldots, v_k \in V(G)$ **Output:** A k-partition (V_1, \ldots, V_k) , such that $v_i \in V_i$ for all i, and the number of edges crossing the partition classes is minimized.

Surjective Minimum Violation. SVio(*H*)

Input: G = (V, E).

Output: A surjective map from *G* to *H* with minimum violation.

Surjective Minimum Violation. SVio(*H*)

Input: G = (V, E).

Output: A surjective map from *G* to *H* with minimum violation.

NOT SURJECTIVE!

Surjective Minimum Violation. SVio(*H*)

Input: G = (V, E).

Output: A surjective map from *G* to *H* with minimum violation.

NOT SURJECTIVE! H is s-tractable if SVio(H) is tractable.

Complete classification of r-tractable/s-tractable graphs implies complexity of various cut problems.

Complete classification of r-tractable/s-tractable graphs implies complexity of various cut problems.

Classification of s-tractable graphs and r-tractable graphs was studied under the name " G_c -cut". [Elem-Hassin-Monnot 13]

Goal: classify the s-tractable and r-tractable graphs.

There exists a polynomial time algorithm that decides if a (directed) graph is r-tractable.

v dominates u if $N(u) \subsetneq N(v)$.

A graph G = (V, E) is a double-clique, if $G = G[A] \cup G[B]$ for some clique $A, B \subseteq V$.

Theorem ([Kawarabayashi-X unpublished])

A reflexive graph G is r-tractable if and only if G[U] is a double-clique, where U is the set of non-dominated vertices.

A reflexive graph H is s-tractable if and only if each of its component is s-tractable.

A reflexive graph H is s-tractable if and only if each of its component is s-tractable.

Consequences:

• k-cut is solvable in polynomial time.

A reflexive graph H is s-tractable if and only if each of its component is s-tractable.

Consequences:

- k-cut is solvable in polynomial time.
- Size-constrained *k*-cut: each partition class has at least *c* (a constant) vertices is solvable in polynomial time.

Thank you!