
Cuts and Connectivity in Graphs and

Hypergraphs

Chao Xu

March 12, 2018

University of Illinois, Urbana-Champaign

1

Min st-cut in graphs

Remove min number of edges to disconnect s from t.

2

Min st-cut in graphs

Remove min number of edges to disconnect s from t.

3

Min cut in graphs

Remove min number of edges to disconnect some pair of vertices.

4

Min cut in graphs

Remove min number of edges to disconnect some pair of vertices.

5

Formal definition

Problem: Min st-cut

Input: G = (V ,E) and s, t ∈ V

Output: A 2-partition (S ,T) of the vertices V , such that s ∈ S ,

t ∈ T , and the number of edges crossing S is minimized.

Problem: Min-cut

Input: G = (V ,E)

Output: A 2-partition (S ,T) of the vertices V , such that the

number of edges crossing S is minimized.

Min st-cut problem is the fixed-terminal variant of min-cut

problem, the global variant.

The value of the min-cut is also called

the (edge) connectivity, denoted λ.

6

Formal definition

Problem: Min st-cut

Input: G = (V ,E) and s, t ∈ V

Output: A 2-partition (S ,T) of the vertices V , such that s ∈ S ,

t ∈ T , and the number of edges crossing S is minimized.

Problem: Min-cut

Input: G = (V ,E)

Output: A 2-partition (S ,T) of the vertices V , such that the

number of edges crossing S is minimized.

Min st-cut problem is the fixed-terminal variant of min-cut

problem, the global variant. The value of the min-cut is also called

the (edge) connectivity, denoted λ.

6

Applications of min-cut and min-st-cut

• Disconnect railroad networks,

• Maximum cardinality bipartite matching,

• Image segmentation,

• ...

7

Algorithms for graph min-cut

• Finding a min-cut reduces to finding min-st-cut for each pair

of s and t.

• Õ(mn) time: Maximum adjacency ordering. [Stoer-Wagner 95].

• Õ(m) time (randomized). [Karger 98]

• Õ(m) time (simple, unweighted). [Kawarabayashi-Thorup 15,

Henzinger-Rao-Wang 17]

8

The Thesis

• Efficient algorithms for min-cut and its generalizations in

graphs and hypergraphs.

• Understand the complexity difference between global and

fixed-terminal variants.

• Algorithms for hypergraph min-cut.

• Approximation for bicut.

• Hypergraph k-cut.

• Minimum violation.

9

The Thesis

• Efficient algorithms for min-cut and its generalizations in

graphs and hypergraphs.

• Understand the complexity difference between global and

fixed-terminal variants.

• Algorithms for hypergraph min-cut.

• Approximation for bicut.

• Hypergraph k-cut.

• Minimum violation.

9

Algorithms for hypergraph min-cut

A hypergraph

A hypergraph H = (V ,E) consists of vertices V and edges E .

10

Cut function

• δH(S) is the set of all edges cross S

• The cut function c : 2V → N

cH(S) = |δH(S)|

• A set of vertices ∅ (S (V is a min-cut if cH(S) is

minimized.

SS

11

Motivations for studying hypergraphs

• a natural generalization of graphs

• element connectivity [Chekuri-Rukkanchanunt-X 16]

• real life applications: VLIS, security, data mining, chemistry

. . .

12

The min-cut problems

• Find a min-cut.

• Find all min-cuts.

• Find a (1 + ε)-approximate min-cut.

13

Results on hypergraph cuts

unweighted weighted

Problem graph hypergraph graph hypergraph

Min-cut O(m + λn2) O(p + λn2) Õ(mn) Õ(pn)

all min-cuts O(m + λn2) O(p + λn2) Õ(mn) Õ(pn)

(1 + ε)-min-cut - - O(m + n2/ε2) O(p + n2r 4/ε2)

• n: # vertices.

• m: # edges.

• p: sum of the cardinality of the edges.

• λ: value of a min-cut.

• r : the rank.

14

Algorithms for hypergraph min-cut

Min-cut in unweighted hypergraphs

Min-cut in unweighted graphs

1. Find a sparse subgraph with O(λn) edges that preserves the

min-cut in O(m) time.

2. Apply the O(mn) min-cut algorithm on the sparse subgraph.

Total running time: O(m + λn2)

15

k-certificate

Subgraph H ′ a k-certificate of H if for all S ⊆ V

cH′(S) ≥ min(cH(S), k).

Example: a spanning tree is a 1-certificate of a connected graph.

Theorem ([Nagamochi-Ibaraki 92])

A graph has a k-certificate with O(kn) edges, and can be found in

O(m) time.

16

k-certificate

Subgraph H ′ a k-certificate of H if for all S ⊆ V

cH′(S) ≥ min(cH(S), k).

Example: a spanning tree is a 1-certificate of a connected graph.

Theorem ([Nagamochi-Ibaraki 92])

A graph has a k-certificate with O(kn) edges, and can be found in

O(m) time.

16

k-certificate

Subgraph H ′ a k-certificate of H if for all S ⊆ V

cH′(S) ≥ min(cH(S), k).

Example: a spanning tree is a 1-certificate of a connected graph.

Theorem ([Nagamochi-Ibaraki 92])

A graph has a k-certificate with O(kn) edges, and can be found in

O(m) time.

16

Application of k-certificate

• finding the connectivity.

• spanning tree packing. [Gabow 98]

• sketching in dynamic graph streams. [Guha-McGregor-Tench 15]

• (1 + ε)-approximate min-cut.

17

Application of k-certificate

• finding the connectivity.

• spanning tree packing. [Gabow 98]

• sketching in dynamic graph streams. [Guha-McGregor-Tench 15]

• (1 + ε)-approximate min-cut.

17

Application of k-certificate

• finding the connectivity.

• spanning tree packing. [Gabow 98]

• sketching in dynamic graph streams. [Guha-McGregor-Tench 15]

• (1 + ε)-approximate min-cut.

17

Application of k-certificate

• finding the connectivity.

• spanning tree packing. [Gabow 98]

• sketching in dynamic graph streams. [Guha-McGregor-Tench 15]

• (1 + ε)-approximate min-cut.

17

k-certificate for hypergraphs?

1. Find a λ-certificate.

2. Apply the O(pn) min-cut algorithm on the λ-certificate.

Theorem ([Guha-McGregor-Tench 15])

Every hypergraph has a k-certificate with O(kn) edges(each edge

can contain Ω(n) vertices) and can be found in O(kp) time.

Running time O(λp + λn3).

18

k-certificate for hypergraphs?

1. Find a λ-certificate.

2. Apply the O(pn) min-cut algorithm on the λ-certificate.

Theorem ([Guha-McGregor-Tench 15])

Every hypergraph has a k-certificate with O(kn) edges(each edge

can contain Ω(n) vertices) and can be found in O(kp) time.

Running time O(λp + λn3).

18

k-certificate for hypergraphs?

1. Find a λ-certificate.

2. Apply the O(pn) min-cut algorithm on the λ-certificate.

Theorem ([Guha-McGregor-Tench 15])

Every hypergraph has a k-certificate with O(kn) edges(each edge

can contain Ω(n) vertices) and can be found in O(kp) time.

Running time O(λp + λn3).

18

Small size k-certificate

Theorem ([Chekuri-X 17])

Every hypergraph has a k-certificate with size O(kn), and can be

found in O(p) time.

Consequence: O(p + λn2) time algorithm for finding a min-cut.

19

Small size k-certificate

Theorem ([Chekuri-X 17])

Every hypergraph has a k-certificate with size O(kn), and can be

found in O(p) time.

Consequence: O(p + λn2) time algorithm for finding a min-cut.

19

Algorithms for hypergraph min-cut

All min-cuts

What does it mean to find all min-cuts?

Find a small (O(n)-size) data structure that can quickly

enumerate/count the number of min-cuts.

20

A representation

A graph(hypergraph) G ′ = (V ′,E ′) is a representation of

G = (V ,E), if there exists a function φ : V → V ′ such that

1. S ′ is a min-cut in G ′ iff φ−1(S ′) is a min-cut in G .

2. S is a min-cut in G , iff φ(S) is a min-cut in G ′.

21

Graphs: Finding all min-cuts

A cactus is a graph in which any two cycles are edge disjoint.

Theorem ([Dinitz et. al. 76, Karzanov & Timofeev 86])

For each graph G there exist a representation G ′ where G ′ is a

cactus.

A cactus representation can be found

• in Õ(nm) time [Nagamochi et. al. 03]

• in (randomized) Õ(m) time [Karger & Panigrahi 09]

22

Hypergraphs: Finding all min-cuts

Theorem ([Cheng 99, Fleiner & Jordan 99])

For each hypergraph H there exist a representation H ′ where H ′ is

a hypercactus.

Expensive to construct, in the order of O(n4p).

23

Hypergraphs: Finding all min-cuts

Theorem ([Cheng 99, Fleiner & Jordan 99])

For each hypergraph H there exist a representation H ′ where H ′ is

a hypercactus.

Expensive to construct, in the order of O(n4p).

23

Hypergraphs: Finding all min-cuts

Theorem ([Chekuri & X 17])

A hypercactus representation can be found in Õ(np) time.

Approach: Using the decomposition framework [Cunningham 93].

Matches the result in graphs. Conceptually simpler algorithm.

24

Hypergraphs: Finding all min-cuts

Theorem ([Chekuri & X 17])

A hypercactus representation can be found in Õ(np) time.

Approach: Using the decomposition framework [Cunningham 93].

Matches the result in graphs. Conceptually simpler algorithm.

24

Hypergraphs: Finding all min-cuts

Theorem ([Chekuri & X 17])

A hypercactus representation can be found in Õ(np) time.

Approach: Using the decomposition framework [Cunningham 93].

Matches the result in graphs. Conceptually simpler algorithm.

24

Algorithms for hypergraph min-cut

(1 + ε)-approximate min-cut

Finding an (1 + ε)-approximate min-cut

S is a (1 + ε)-approximate min-cut if c(S) ≤ (1 + ε)λ.

1. Find a sparse subgraph that approximately preserves all

min-cuts.

2. Find a min-cut in the sparse subgraph.

25

Finding an (1 + ε)-approximate min-cut

S is a (1 + ε)-approximate min-cut if c(S) ≤ (1 + ε)λ.

1. Find a sparse subgraph that approximately preserves all

min-cuts.

2. Find a min-cut in the sparse subgraph.

25

Cut-sparsifiers

A graph G is a (1± ε)-cut-sparsifier of H if

(1− ε)cG (A) ≤ cH(A) ≤ (1 + ε)cG (A) for all A ⊆ V .

Theorem ([Benczúr-Karger 98])

There exists a (1± ε)-cut-sparsifier of Õ(n
ε2) edges, and can be

constructed in Õ(m) time with high probability.

Consequence: A (1 + ε)-approximate min-cut can be found in

Õ(m + n2

ε2) time. Near-linear time when graph is dense.

26

Cut-sparsifiers

A graph G is a (1± ε)-cut-sparsifier of H if

(1− ε)cG (A) ≤ cH(A) ≤ (1 + ε)cG (A) for all A ⊆ V .

Theorem ([Benczúr-Karger 98])

There exists a (1± ε)-cut-sparsifier of Õ(n
ε2) edges, and can be

constructed in Õ(m) time with high probability.

Consequence: A (1 + ε)-approximate min-cut can be found in

Õ(m + n2

ε2) time. Near-linear time when graph is dense.

26

Cut-sparsifiers

A graph G is a (1± ε)-cut-sparsifier of H if

(1− ε)cG (A) ≤ cH(A) ≤ (1 + ε)cG (A) for all A ⊆ V .

Theorem ([Benczúr-Karger 98])

There exists a (1± ε)-cut-sparsifier of Õ(n
ε2) edges, and can be

constructed in Õ(m) time with high probability.

Consequence: A (1 + ε)-approximate min-cut can be found in

Õ(m + n2

ε2) time.

Near-linear time when graph is dense.

26

Cut-sparsifiers

A graph G is a (1± ε)-cut-sparsifier of H if

(1− ε)cG (A) ≤ cH(A) ≤ (1 + ε)cG (A) for all A ⊆ V .

Theorem ([Benczúr-Karger 98])

There exists a (1± ε)-cut-sparsifier of Õ(n
ε2) edges, and can be

constructed in Õ(m) time with high probability.

Consequence: A (1 + ε)-approximate min-cut can be found in

Õ(m + n2

ε2) time. Near-linear time when graph is dense.

26

Cut-sparsifiers in hypergraphs

Theorem ([Kogan-Krauthgamer 14])

There exists a (1± ε)-cut-sparsifier of Õ(nr
ε2) edges, and can be

constructed in Õ(n2p) time with high probability.

Too slow.

27

Cut-sparsifiers in hypergraphs

Theorem ([Kogan-Krauthgamer 14])

There exists a (1± ε)-cut-sparsifier of Õ(nr
ε2) edges, and can be

constructed in Õ(n2p) time with high probability.

Too slow.

27

Fast cut-sparsifiers in hypergraphs

Theorem ([Chekuri-X 17])

A (1± ε)-cut-sparsifier of H with Õ(nr2/ε2) edges can be found in

Õ(p) time with high probability.

Consequence: Õ(p + n2r4/ε2) algorithm for (1 + ε)-approximate

min-cut in hypergraphs. Õ(p + n2/ε2) for constant rank

hypergraphs.

Near-linear time when the hypergraph is dense.

28

Fast cut-sparsifiers in hypergraphs

Theorem ([Chekuri-X 17])

A (1± ε)-cut-sparsifier of H with Õ(nr2/ε2) edges can be found in

Õ(p) time with high probability.

Consequence: Õ(p + n2r4/ε2) algorithm for (1 + ε)-approximate

min-cut in hypergraphs.

Õ(p + n2/ε2) for constant rank

hypergraphs.

Near-linear time when the hypergraph is dense.

28

Fast cut-sparsifiers in hypergraphs

Theorem ([Chekuri-X 17])

A (1± ε)-cut-sparsifier of H with Õ(nr2/ε2) edges can be found in

Õ(p) time with high probability.

Consequence: Õ(p + n2r4/ε2) algorithm for (1 + ε)-approximate

min-cut in hypergraphs. Õ(p + n2/ε2) for constant rank

hypergraphs.

Near-linear time when the hypergraph is dense.

28

Fast cut-sparsifiers in hypergraphs

Theorem ([Chekuri-X 17])

A (1± ε)-cut-sparsifier of H with Õ(nr2/ε2) edges can be found in

Õ(p) time with high probability.

Consequence: Õ(p + n2r4/ε2) algorithm for (1 + ε)-approximate

min-cut in hypergraphs. Õ(p + n2/ε2) for constant rank

hypergraphs.

Near-linear time when the hypergraph is dense.

28

Summary: Fast hypergraph cut algorithms

that match their state-of-the-art graph

counterparts.

28

Min-cut in directed graphs: Bicut

st-cut

29

st-cut

30

st-bicut

31

st-bicut

32

Bicut: Generalization of min-cut in directed graphs

• st-bicut: A set of edges such that its removal disconnect s

and t in both direction.

• bicut: A st-bicut for some s and t.

33

Hardness: min-st-bicut

A special case of multicut in directed graphs.

• Trivial 2-approximation. Union of min-st-cut and min-ts-cut

[Dahlhaus et. al. 1994].

• (2− ε)-inapproximable under UGC. [Chekuri & Madan 16, Lee 16]

34

Min-Bicut

It is not known if computing bicut is NP-hard.

Theorem ([Bérczi-Chandrasekaran-Király-Lee-X 17])

A (2− δ)-approximation exists for min-bicut, where δ = 1
448 .

A hardness separation between fixed-terminal and global bicut!

35

Min-Bicut

It is not known if computing bicut is NP-hard.

Theorem ([Bérczi-Chandrasekaran-Király-Lee-X 17])

A (2− δ)-approximation exists for min-bicut, where δ = 1
448 .

A hardness separation between fixed-terminal and global bicut!

35

Min-Bicut

It is not known if computing bicut is NP-hard.

Theorem ([Bérczi-Chandrasekaran-Király-Lee-X 17])

A (2− δ)-approximation exists for min-bicut, where δ = 1
448 .

A hardness separation between fixed-terminal and global bicut!

35

Vertex based interpretation of bicut

A and B are uncomparable if A \ B 6= ∅ and B \ A 6= ∅.

Theorem

The min-bicut problem is equivalent to two uncomparable sets

A,B ⊆ V with minimum |δin(A) ∪ δin(B)|.

Approach: Find multiple relaxations such that one of them is a

(2− δ)-approximation.

Example: Find uncomparable sets A and B such that

|δin(A)|+|δin(B)| is minimized. If it is not a (2− δ)-approximation,

then most edges in the optimal bi-cut are going into A ∩ B.

36

Vertex based interpretation of bicut

A and B are uncomparable if A \ B 6= ∅ and B \ A 6= ∅.

Theorem

The min-bicut problem is equivalent to two uncomparable sets

A,B ⊆ V with minimum |δin(A) ∪ δin(B)|.

Approach: Find multiple relaxations such that one of them is a

(2− δ)-approximation.

Example: Find uncomparable sets A and B such that

|δin(A)|+|δin(B)| is minimized. If it is not a (2− δ)-approximation,

then most edges in the optimal bi-cut are going into A ∩ B.

36

Vertex based interpretation of bicut

A and B are uncomparable if A \ B 6= ∅ and B \ A 6= ∅.

Theorem

The min-bicut problem is equivalent to two uncomparable sets

A,B ⊆ V with minimum |δin(A) ∪ δin(B)|.

Approach: Find multiple relaxations such that one of them is a

(2− δ)-approximation.

Example: Find uncomparable sets A and B such that

|δin(A)|+|δin(B)| is minimized. If it is not a (2− δ)-approximation,

then most edges in the optimal bi-cut are going into A ∩ B.

36

Summary: A hardness gap between global and

fixed-terminal bicut.

36

k-cut in hypergraphs

k-way-cut in graphs

Problem: Min k-way cut

Input: G and v1, . . . , vk ∈ V (G)

Output: A k-partition (V1, . . . ,Vk), such that vi ∈ Vi for all i , and

the number of edges crossing the partition classes is minimized.

A min-k-cut is the minimum over all k-way-cut.

37

Global vs. Fixed-terminal

• Min k-way-cut is hard for k ≥ 3. [Dahlhaus et. al. 94]

• Min k-cut. Multiple polynomial time algorithms!

• Fix a partition class: nΘ(k2) [Goldschmidt-Hochbaum 94].

• Randomized contraction: Õ(n2(k−1)) [Karger-Stein 96].

• Divide and conquer: O(n(4+o(1))k) [Kamidoi-Yoshida-Nagamochi

07].

• Divide and conquer: O(n(4−o(1))k) [Xiao 08].

• Tree packing: Õ(n2k) [Thorup 08].

38

Global vs. Fixed-terminal

• Min k-way-cut is hard for k ≥ 3. [Dahlhaus et. al. 94]

• Min k-cut. Multiple polynomial time algorithms!

• Fix a partition class: nΘ(k2) [Goldschmidt-Hochbaum 94].

• Randomized contraction: Õ(n2(k−1)) [Karger-Stein 96].

• Divide and conquer: O(n(4+o(1))k) [Kamidoi-Yoshida-Nagamochi

07].

• Divide and conquer: O(n(4−o(1))k) [Xiao 08].

• Tree packing: Õ(n2k) [Thorup 08].

38

Global vs. Fixed-terminal

• Min k-way-cut is hard for k ≥ 3. [Dahlhaus et. al. 94]

• Min k-cut. Multiple polynomial time algorithms!

• Fix a partition class: nΘ(k2) [Goldschmidt-Hochbaum 94].

• Randomized contraction: Õ(n2(k−1)) [Karger-Stein 96].

• Divide and conquer: O(n(4+o(1))k) [Kamidoi-Yoshida-Nagamochi

07].

• Divide and conquer: O(n(4−o(1))k) [Xiao 08].

• Tree packing: Õ(n2k) [Thorup 08].

38

Global vs. Fixed-terminal

• Min k-way-cut is hard for k ≥ 3. [Dahlhaus et. al. 94]

• Min k-cut. Multiple polynomial time algorithms!

• Fix a partition class: nΘ(k2) [Goldschmidt-Hochbaum 94].

• Randomized contraction: Õ(n2(k−1)) [Karger-Stein 96].

• Divide and conquer: O(n(4+o(1))k) [Kamidoi-Yoshida-Nagamochi

07].

• Divide and conquer: O(n(4−o(1))k) [Xiao 08].

• Tree packing: Õ(n2k) [Thorup 08].

38

Global vs. Fixed-terminal

• Min k-way-cut is hard for k ≥ 3. [Dahlhaus et. al. 94]

• Min k-cut. Multiple polynomial time algorithms!

• Fix a partition class: nΘ(k2) [Goldschmidt-Hochbaum 94].

• Randomized contraction: Õ(n2(k−1)) [Karger-Stein 96].

• Divide and conquer: O(n(4+o(1))k) [Kamidoi-Yoshida-Nagamochi

07].

• Divide and conquer: O(n(4−o(1))k) [Xiao 08].

• Tree packing: Õ(n2k) [Thorup 08].

38

What about hypergraphs?

38

Previous works on HYPERGRAPH k-cut

• Min k-way-cut is hard for k ≥ 3.

• Min k-cut.

• k = 2: Hypergraph cut.

• k = 3: Deterministic contraction [Xiao 08].

• Constant rank: Hypertree packing [Fukunaga 10].

Main question: Hypergraph k-cut for k ≥ 4 in arbitrary rank

hypergraphs?

Fixed-terminal vs. global complexity gap?

39

Previous works on HYPERGRAPH k-cut

• Min k-way-cut is hard for k ≥ 3.

• Min k-cut.

• k = 2: Hypergraph cut.

• k = 3: Deterministic contraction [Xiao 08].

• Constant rank: Hypertree packing [Fukunaga 10].

Main question: Hypergraph k-cut for k ≥ 4 in arbitrary rank

hypergraphs?

Fixed-terminal vs. global complexity gap?

39

Previous works on HYPERGRAPH k-cut

• Min k-way-cut is hard for k ≥ 3.

• Min k-cut.

• k = 2: Hypergraph cut.

• k = 3: Deterministic contraction [Xiao 08].

• Constant rank: Hypertree packing [Fukunaga 10].

Main question: Hypergraph k-cut for k ≥ 4 in arbitrary rank

hypergraphs?

Fixed-terminal vs. global complexity gap?

39

Previous works on HYPERGRAPH k-cut

• Min k-way-cut is hard for k ≥ 3.

• Min k-cut.

• k = 2: Hypergraph cut.

• k = 3: Deterministic contraction [Xiao 08].

• Constant rank: Hypertree packing [Fukunaga 10].

Main question: Hypergraph k-cut for k ≥ 4 in arbitrary rank

hypergraphs?

Fixed-terminal vs. global complexity gap?

39

Our result

Theorem ([Chandrasekaran-X-Yu 18])

There exists a randomized polynomial time algorithm that finds a

minimum k-cut in a hypergraph.

Approach:

Randomized contraction algorithm with dampened sampling.

Theorem ([Chandrasekaran-X-Yu 18])

There are O(n2(k−1)) distinct min-k-cuts in a hypergraph.

40

Our result

Theorem ([Chandrasekaran-X-Yu 18])

There exists a randomized polynomial time algorithm that finds a

minimum k-cut in a hypergraph.

Approach:

Randomized contraction algorithm with dampened sampling.

Theorem ([Chandrasekaran-X-Yu 18])

There are O(n2(k−1)) distinct min-k-cuts in a hypergraph.

40

Our result

Theorem ([Chandrasekaran-X-Yu 18])

There exists a randomized polynomial time algorithm that finds a

minimum k-cut in a hypergraph.

Approach:

Randomized contraction algorithm with dampened sampling.

Theorem ([Chandrasekaran-X-Yu 18])

There are O(n2(k−1)) distinct min-k-cuts in a hypergraph.

40

Summary: There is a global vs. fixed-terminal

complexity gap for hypergraph k-cut.

40

Minimum violation

Violation

A map from G = (V ,E) to H = (U,F) is a function f : V → U.

H is the pattern graph.

An edge uv ∈ E is a violating edge, if f (u)f (v) 6∈ F .

The violation of f is the number of violating edges.

GG HH

41

Violation

A map from G = (V ,E) to H = (U,F) is a function f : V → U.

H is the pattern graph.

An edge uv ∈ E is a violating edge, if f (u)f (v) 6∈ F .

The violation of f is the number of violating edges.

GG HH 41

Violation

A map from G = (V ,E) to H = (U,F) is a function f : V → U.

H is the pattern graph.

An edge uv ∈ E is a violating edge, if f (u)f (v) 6∈ F .

The violation of f is the number of violating edges.

GG HH 42

Minimum violation retraction. RVio(H)

Input: graph G and a bijection f ′ : V ′ → U for some V ′ ⊆ V (G)

Output: A map f from G to H such that f |V ′ = f ′ and the

violation is minimized.

Vertices in V ′ are fixed vertices.

HHGG

f 0f 0

H is r-tractable if RVio(H) is tractable.

43

Minimum violation retraction. RVio(H)

Input: graph G and a bijection f ′ : V ′ → U for some V ′ ⊆ V (G)

Output: A map f from G to H such that f |V ′ = f ′ and the

violation is minimized.

Vertices in V ′ are fixed vertices.

HHGG

f 0f 0

H is r-tractable if RVio(H) is tractable.

43

k-way cut

Problem: Min k-way cut

Input: G and v1, . . . , vk ∈ V (G)

Output: A k-partition (V1, . . . ,Vk), such that vi ∈ Vi for all i , and

the number of edges crossing the partition classes is minimized.

44

3-way cut

45

3-way cut

46

Surjective Minimum Violation. SVio(H)

Input: G = (V ,E).

Output: A surjective map from G to H with minimum violation.

GG HH

NOT SURJECTIVE! H is s-tractable if SVio(H) is tractable.

47

Surjective Minimum Violation. SVio(H)

Input: G = (V ,E).

Output: A surjective map from G to H with minimum violation.

GG HH

NOT SURJECTIVE!

H is s-tractable if SVio(H) is tractable.

47

Surjective Minimum Violation. SVio(H)

Input: G = (V ,E).

Output: A surjective map from G to H with minimum violation.

GG HH

NOT SURJECTIVE! H is s-tractable if SVio(H) is tractable.

47

Why minimum violation?

Complete classification of r-tractable/s-tractable graphs implies

complexity of various cut problems.

Classification of s-tractable graphs and r-tractable graphs was

studied under the name “Gc -cut”. [Elem-Hassin-Monnot 13]

48

Why minimum violation?

Complete classification of r-tractable/s-tractable graphs implies

complexity of various cut problems.

Classification of s-tractable graphs and r-tractable graphs was

studied under the name “Gc -cut”. [Elem-Hassin-Monnot 13]

48

Goal: classify the s-tractable and r-tractable

graphs.

48

Classification of r-tractable (directed) graphs

Theorem ([Kawarabayashi-X unpublished])

There exists a polynomial time algorithm that decides if a

(directed) graph is r -tractable.

49

Classification of r-tractable graphs

v dominates u if N(u) (N(v).

A graph G = (V ,E) is a double-clique, if G = G [A] ∪ G [B] for

some clique A,B ⊆ V .

Theorem ([Kawarabayashi-X unpublished])

A reflexive graph G is r -tractable if and only if G [U] is a

double-clique, where U is the set of non-dominated vertices.

50

A theorem on s-tractable graphs

Theorem ([Kawarabayashi-X unpublished])

A reflexive graph H is s-tractable if and only if each of its

component is s-tractable.

Consequences:

• k-cut is solvable in polynomial time.

• Size-constrained k-cut: each partition class has at least c (a

constant) vertices is solvable in polynomial time.

51

A theorem on s-tractable graphs

Theorem ([Kawarabayashi-X unpublished])

A reflexive graph H is s-tractable if and only if each of its

component is s-tractable.

Consequences:

• k-cut is solvable in polynomial time.

• Size-constrained k-cut: each partition class has at least c (a

constant) vertices is solvable in polynomial time.

51

A theorem on s-tractable graphs

Theorem ([Kawarabayashi-X unpublished])

A reflexive graph H is s-tractable if and only if each of its

component is s-tractable.

Consequences:

• k-cut is solvable in polynomial time.

• Size-constrained k-cut: each partition class has at least c (a

constant) vertices is solvable in polynomial time.

51

Thank you!

51

	Algorithms for hypergraph min-cut
	Min-cut in unweighted hypergraphs
	All min-cuts
	(1+)-approximate min-cut

	Min-cut in directed graphs: Bicut
	k-cut in hypergraphs
	Minimum violation

