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Problem: Min-cut

Input: G = (V,E)

Output: A 2-partition (S, T) of the vertices V, such that the
number of edges crossing S is minimized.

Min st-cut problem is the fixed-terminal variant of min-cut
problem, the global variant. The value of the min-cut is also called
the (edge) connectivity, denoted .



Applications of min-cut and min-st-cut

Disconnect railroad networks,

e Maximum cardinality bipartite matching,

Image segmentation,



Algorithms for graph min-cut

e Finding a min-cut reduces to finding min-st-cut for each pair
of s and t.
° (N)(mn) time: Maximum adjacency ordering. [Stoer-Wagner 95].

O(m) time (randomized). [Karger 98]

@(m) time (simple, unweighted). [Kawarabayashi-Thorup 15,

Henzinger-Rao-Wang 17]



The Thesis

e Efficient algorithms for min-cut and its generalizations in
graphs and hypergraphs.
e Understand the complexity difference between global and

fixed-terminal variants.



The Thesis

e Efficient algorithms for min-cut and its generalizations in
graphs and hypergraphs.

e Understand the complexity difference between global and
fixed-terminal variants.

e Algorithms for hypergraph min-cut.
e Approximation for bicut.
e Hypergraph k-cut.

e Minimum violation.



Algorithms for hypergraph min-cut




A hypergraph

A hypergraph H = (V, E) consists of vertices V and edges E.
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Cut function

e 04(S) is the set of all edges cross S
e The cut function ¢ : 2¥ — N

cH(S) = |on(S)]

e A set of vertices ) € S C V is a min-cut if cy(S) is

minimized.
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Motivations for studying hypergraphs

e a natural generalization of graphs
e element connectivity [Chekuri-Rukkanchanunt-X 16]

e real life applications: VLIS, security, data mining, chemistry

12



The min-cut problems

e Find a min-cut.
e Find all min-cuts.

e Find a (1 + €)-approximate min-cut.
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Results on hypergraph cuts

unweighted weighted
Problem graph hypergraph graph hypergraph
Min-cut O(m+An?) | O(p+ An?) O(mn) O(pn)
all min-cuts O(m+An?) | O(p+ An?) O(mn) O(pn)
(1 + €)-min-cut - - O(m+n?/é) | O(p+ n*r*/é?)
e n: # vertices.
e m: F edges.
e p: sum of the cardinality of the edges.
e )\: value of a min-cut.
e r: the rank.
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Algorithms for hypergraph min-cut

Min-cut in unweighted hypergraphs



Min-cut in unweighted graphs

1. Find a sparse subgraph with O(An) edges that preserves the
min-cut in O(m) time.

2. Apply the O(mn) min-cut algorithm on the sparse subgraph.

Total running time: O(m + An?)
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k-certificate

Subgraph H' a k-certificate of H if for all S C V

e (S) = min(cey(S), k).
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k-certificate

Subgraph H' a k-certificate of H if for all S C V
c(S) > min(en(S), k).

Example: a spanning tree is a 1-certificate of a connected graph.
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k-certificate

Subgraph H' a k-certificate of H if for all S C V
c(S) > min(en(S), k).

Example: a spanning tree is a 1-certificate of a connected graph.

Theorem ([Nagamochi-lbaraki 92])
A graph has a k-certificate with O(kn) edges, and can be found in
O(m) time.
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Application of k-certificate

e finding the connectivity.
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Application of k-certificate

finding the connectivity.

e spanning tree packing. [Gabow 98]

sketching in dynamic graph streams. [Guha-McGregor-Tench 15]

(1 + €)-approximate min-cut.
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k-certificate for hypergraphs?

1. Find a M\-certificate.

2. Apply the O(pn) min-cut algorithm on the \-certificate.
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k-certificate for hypergraphs?

1. Find a M\-certificate.

2. Apply the O(pn) min-cut algorithm on the \-certificate.

Theorem ([Guha-McGregor-Tench 15])

Every hypergraph has a k-certificate with O(kn) edges(each edge
can contain §)(n) vertices) and can be found in O(kp) time.

Running time O(Ap + An).
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Small size k-certificate

Theorem ([Chekuri-X 17])
Every hypergraph has a k-certificate with size O(kn), and can be
found in O(p) time.
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Small size k-certificate

Theorem ([Chekuri-X 17])

Every hypergraph has a k-certificate with size O(kn), and can be
found in O(p) time.

Consequence: O(p + An?) time algorithm for finding a min-cut.
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Algorithms for hypergraph min-cut

All min-cuts



What does it mean to find all min-cuts?

Find a small (O(n)-size) data structure that can quickly
enumerate/count the number of min-cuts.
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A representation

A graph(hypergraph) G’ = (V'  E’) is a representation of
G = (V, E), if there exists a function ¢ : V — V' such that

1. S"is a min-cut in G’ iff ~1(S’) is a min-cut in G.

2. Sis a min-cut in G, iff ¢(S) is a min-cut in G’
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Graphs: Finding all min-cuts

A cactus is a graph in which any two cycles are edge disjoint.
Theorem ([Dinitz et. al. 76, Karzanov & Timofeev 86])

For each graph G there exist a representation G' where G’ is a
cactus.

A cactus representation can be found

e in O(nm) time [Nagamochi et. al. 03]

e in (randomized) O(m) time [Karger & Panigrahi 09]
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Hypergraphs: Finding all min-cuts
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Theorem ([Cheng 99, Fleiner & Jordan 99])
For each hypergraph H there exist a representation H' where H' is
a hypercactus.
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Hypergraphs: Finding all min-cuts
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Theorem ([Cheng 99, Fleiner & Jordan 99])

For each hypergraph H there exist a representation H' where H' is
a hypercactus.

Expensive to construct, in the order of O(n*p).
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Hypergraphs: Finding all min-cuts

Theorem ([Chekuri & X 17])

A hypercactus representation can be found in é(np) time.
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Hypergraphs: Finding all min-cuts

Theorem ([Chekuri & X 17])

A hypercactus representation can be found in é(np) time.

Approach: Using the decomposition framework [Cunningham 93].
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Hypergraphs: Finding all min-cuts

Theorem ([Chekuri & X 17])

A hypercactus representation can be found in é(np) time.

Approach: Using the decomposition framework [Cunningham 93].
Matches the result in graphs. Conceptually simpler algorithm.
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Algorithms for hypergraph min-cut

(1 + ¢)-approximate min-cut



Finding an (1 + ¢)-approximate min-cut

Sis a (1 + €)-approximate min-cut if ¢(S) < (1 + €)A.
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Finding an (1 + ¢)-approximate min-cut

Sis a (1 + €)-approximate min-cut if ¢(S) < (1 + €)A.

1. Find a sparse subgraph that approximately preserves all
min-cuts.

2. Find a min-cut in the sparse subgraph.

25)



Cut-sparsifiers

A graph G is a (1 + ¢)-cut-sparsifier of H if
(1 —€)cg(A) < cu(A) < (1 +€)cg(A) forall AC V.
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A graph G is a (1 + ¢)-cut-sparsifier of H if
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There exists a (1 £ €)-cut-sparsifier of (N)(e%) edges, and can be
constructed in O(m) time with high probability.
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(1 —€)cg(A) < cu(A) < (1 +€)cg(A) forall AC V.
Theorem ([Benczir-Karger 98])

There exists a (1 £ €)-cut-sparsifier of (N)(e%) edges, and can be
constructed in O(m) time with high probability.

Consequence: A (1 + €)-approximate min-cut can be found in
O(m+ :—;) time. Near-linear time when graph is dense.

26



Cut-sparsifiers in hypergraphs

Theorem ([Kogan-Krauthgamer 14])

There exists a (1 £ €)-cut-sparsifier of O(%) edges, and can be
constructed in O(n?p) time with high probability.
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Cut-sparsifiers in hypergraphs

Theorem ([Kogan-Krauthgamer 14])

There exists a (1 £ €)-cut-sparsifier of O(%) edges, and can be
constructed in O(n?p) time with high probability.

Too slow.
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Fast cut-sparsifiers in hypergraphs

Theorem ([Chekuri-X 17])
A (1 = €)-cut-sparsifier of H with O(nr?/e?) edges can be found in

O(p) time with high probability.
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Fast cut-sparsifiers in hypergraphs

Theorem ([Chekuri-X 17])
A (1 = €)-cut-sparsifier of H with O(nr?/e?) edges can be found in

O(p) time with high probability.

Consequence: O(p + n?r*/e?) algorithm for (1 + €)-approximate
min-cut in hypergraphs. O(p + n?/e?) for constant rank
hypergraphs.

Near-linear time when the hypergraph is dense.
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Summary: Fast hypergraph cut algorithms
that match their state-of-the-art graph
counterparts.



Min-cut in directed graphs: Bicut
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Bicut: Generalization of min-cut in directed graphs

e st-bicut: A set of edges such that its removal disconnect s
and t in both direction.

e bicut: A st-bicut for some s and t.

88



Hardness: min-st-bicut

A special case of multicut in directed graphs.

e Trivial 2-approximation. Union of min-st-cut and min-ts-cut
[Dahlhaus et. al. 1994].

e (2 — €)-inapproximable under UGC. [Chekuri & Madan 16, Lee 16]
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It is not known if computing bicut is NP-hard.
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It is not known if computing bicut is NP-hard.

Theorem ([Bérczi-Chandrasekaran-Kirély-Lee-X 17])

A (2 — &)-approximation exists for min-bicut, where § = ;35
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It is not known if computing bicut is NP-hard.

Theorem ([Bérczi-Chandrasekaran-Kirély-Lee-X 17])

A (2 — &)-approximation exists for min-bicut, where § = ;35

A hardness separation between fixed-terminal and global bicut!
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Vertex based interpretation of bicut

A and B are uncomparable if A\ B # () and B\ A # 0.

Theorem

The min-bicut problem is equivalent to two uncomparable sets
A, B C V with minimum |§™(A) U 6"(B)|.
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Vertex based interpretation of bicut

A and B are uncomparable if A\ B # () and B\ A # 0.

Theorem

The min-bicut problem is equivalent to two uncomparable sets
A, B C V with minimum |§™(A) U 6"(B)|.

Approach: Find multiple relaxations such that one of them is a

(2 — &)-approximation.

Example: Find uncomparable sets A and B such that

|6 (A)[+]|6(B)| is minimized. If it is not a (2 — §)-approximation,
then most edges in the optimal bi-cut are going into AN B.
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Summary: A hardness gap between global and
fixed-terminal bicut.



k-cut in hypergraphs




k-way-cut in graphs

Input: G and vq,...,v € V(G)
Output: A k-partition (V4,..., Vi), such that v; € V; for all i, and
the number of edges crossing the partition classes is minimized.

A min-k-cut is the minimum over all k-way-cut.
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Global vs. Fixed-terminal

e Min k-way-cut is hard for kK > 3. [Dahlhaus et. al. 94]
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Global vs. Fixed-terminal

e Min k-way-cut is hard for kK > 3. [Dahlhaus et. al. 94]
e Min k-cut. Multiple polynomial time algorithms!
e Fix a partition class: n® () [Goldschmidt-Hochbaum 94].
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Global vs. Fixed-terminal

e Min k-way-cut is hard for kK > 3. [Dahlhaus et. al. 94]

e Min k-cut. Multiple polynomial time algorithms!

e Fix a partition class: n® () [Goldschmidt-Hochbaum 94].
Randomized contraction: O(n?k~1)) [Karger-Stein 96].
Divide and conquer: O(n(+°(W)k) [Kamidoi-Yoshida-Nagamochi
07].
Divide and conquer: O(n*~°(1)¥) [Xjao 08].
Tree packing: O(n?) [Thorup 08].
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What about hypergraphs?



Previous works on HYPERGRAPH k-cut

e Min k-way-cut is hard for k > 3.
e Min k-cut.
e k = 2: Hypergraph cut.
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Previous works on HYPERGRAPH k-cut

e Min k-way-cut is hard for k > 3.
e Min k-cut.
e k = 2: Hypergraph cut.
e k = 3: Deterministic contraction [Xiao 08].
e Constant rank: Hypertree packing [Fukunaga 10].

Main question: Hypergraph k-cut for k > 4 in arbitrary rank
hypergraphs?

Fixed-terminal vs. global complexity gap?
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Our result

Theorem ([Chandrasekaran-X-Yu 18])
There exists a randomized polynomial time algorithm that finds a
minimum k-cut in a hypergraph.
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Our result

Theorem ([Chandrasekaran-X-Yu 18])
There exists a randomized polynomial time algorithm that finds a
minimum k-cut in a hypergraph.

Approach:
Randomized contraction algorithm with dampened sampling.
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Our result

Theorem ([Chandrasekaran-X-Yu 18])
There exists a randomized polynomial time algorithm that finds a
minimum k-cut in a hypergraph.

Approach:
Randomized contraction algorithm with dampened sampling.

Theorem ([Chandrasekaran-X-Yu 18])
There are O(n®k=1) distinct min-k-cuts in a hypergraph.

40



Summary: There is a global vs. fixed-terminal
complexity gap for hypergraph k-cut.



Minimum violation




A map from G = (V,E) to H= (U, F) is a function f : V — U.
H is the pattern graph.
An edge uv € E is a violating edge, if f(u)f(v) & F.

The violation of f is the number of violating edges.
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A map from G = (V,E) to H= (U, F) is a function f : V — U.
H is the pattern graph.
An edge uv € E is a violating edge, if f(u)f(v) & F.

The violation of f is the number of violating edges.

j
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A map from G = (V,E) to H= (U, F) is a function f : V — U.
H is the pattern graph.
An edge uv € E is a violating edge, if f(u)f(v) & F.

The violation of f is the number of violating edges.

G H 2



Minimum violation retraction. RVio(H)
Input: graph G and a bijection f': V/ — U for some V' C V(G)
Output: A map f from G to H such that f|,» = f’ and the

violation is minimized.

Vertices in V' are fixed vertices.
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Minimum violation retraction. RVio(H)
Input: graph G and a bijection f': V/ — U for some V' C V(G)
Output: A map f from G to H such that f|,» = f’ and the

violation is minimized.

Vertices in V' are fixed vertices.

H is r-tractable if RVio(H) is tractable.
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Input: G and vq,...,v € V(G)
Output: A k-partition (V4,..., Vi), such that v; € V; for all i, and
the number of edges crossing the partition classes is minimized.
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Surjective Minimum Violation. SVio(H)
Input: G =(V,E).
Qutput: A surjective map from G to H with minimum violation.
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Surjective Minimum Violation. SVio(H)
Input: G =(V,E).
Qutput: A surjective map from G to H with minimum violation.

NOT SURJECTIVE!
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Surjective Minimum Violation. SVio(H)
Input: G =(V,E).
Qutput: A surjective map from G to H with minimum violation.

H

NOT SURJECTIVE! H is s-tractable if SVio(H) is tractable.
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Why minimum violation?

Complete classification of r-tractable/s-tractable graphs implies
complexity of various cut problems.
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Why minimum violation?

Complete classification of r-tractable/s-tractable graphs implies

complexity of various cut problems.

Classification of s-tractable graphs and r-tractable graphs was
studied under the name “G.-cut”. [Elem-Hassin-Monnot 13]
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Goal: classify the s-tractable and r-tractable
graphs.



Classification of r-tractable (directed) graphs

Theorem ([Kawarabayashi-X unpublished])
There exists a polynomial time algorithm that decides if a
(directed) graph is r-tractable.

49



Classification of r-tractable graphs

v dominates u if N(u) € N(v).
A graph G = (V, E) is a double-clique, if G = G[A] U G[B] for
some clique A,B C V.

Theorem ([Kawarabayashi-X unpublished])
A reflexive graph G is r-tractable if and only if G[U] is a
double-clique, where U is the set of non-dominated vertices.
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A theorem on s-tractable graphs

Theorem ([Kawarabayashi-X unpublished])
A reflexive graph H is s-tractable if and only if each of its
component is s-tractable.
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A theorem on s-tractable graphs

Theorem ([Kawarabayashi-X unpublished])
A reflexive graph H is s-tractable if and only if each of its
component is s-tractable.

Consequences:

e k-cut is solvable in polynomial time.
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A theorem on s-tractable graphs

Theorem ([Kawarabayashi-X unpublished])
A reflexive graph H is s-tractable if and only if each of its
component is s-tractable.

Consequences:

e k-cut is solvable in polynomial time.

e Size-constrained k-cut: each partition class has at least ¢ (a

constant) vertices is solvable in polynomial time.
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Thank you!
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