Reconstructing Edge-Disjoint Paths Faster

Chao Xu

Abstract

For a simple undirected graph with \(n \) vertices and \(m \) edges, we consider a data structure that given a query of a pair of vertices \(u, v \) and an integer \(k \geq 1 \), it returns \(k \) edge-disjoint \(uv \)-paths. The data structure takes \(\tilde{O}(n^{3.375}) \) time to build, using \(O(\sqrt{mn^{1.5}} \log n) \) space, and each query takes \(O(\sqrt{kn}) \) time, which is optimal and beating the previous query time of \(O(k\alpha(n)) \).

1 Introduction

For a simple undirected graph \(G \) with \(n \) vertices and \(m \) edges, we are interested in building a data structure to return \(k \) edge-disjoint paths between two vertices. Conforti, Hassin and Ravi [3] demonstrated a data structure that takes \(O(n \text{MF}(n, m)) \) preprocessing time, uses \(O(nm) \) space and queries in \(O(k\alpha(n)) \) time, where \(\alpha \) is the inverse Ackermann function and \(\text{MF}(n, m) \) is the running time for computing a maximum flow in an undirected unit capacity graph with \(n \) vertices and \(m \) edges.

Our data structure is simple and reaches the optimal query time of \(O(\sqrt{kn}) \) while improving the space usage to \(O(\sqrt{mn^{1.5}} \log n) \). The query time is optimal as there exist graphs where every \(k \) edge-disjoint \(st \)-paths uses \(\Omega(\sqrt{kn}) \) edges [5].

2 Preliminaries

Throughout the paper, we fix a simple undirected graph \(G = (V, E) \) with \(n \) vertices and \(m \) edges. Denote \(\lambda(s, t) \) to be the local edge-connectivity between \(s \) and \(t \) in \(G \), i.e. the maximum number of edge-disjoint paths between \(s \) and \(t \). The degree of a vertex is \(\deg v \). \(\lambda(s, t) \) is bounded above by both \(\deg s \) and \(\deg t \).

For a rooted tree \(T \) with root \(r \), the lowest common ancestor of two nodes \(u \) and \(v \), denoted \(\alpha_{uv} \), is the node farthest away from the root that is contained in both the \(ru \)-path and the \(rv \)-path. \(T_{uv} \) denotes the subtree of \(T \) rooted at \(\alpha_{uv} \). For any internal node \(v \), we abuse the notation and say \(u \) is a leaf of \(v \) if \(u \) is a leaf of the subtree rooted at \(v \). A binary tree is full if each internal node has two children.

A rooted full binary tree \(T \) with weights on the internal nodes is an ancestor tree of \(U \subseteq V \) if the set of leaves coincides with \(U \) and \(\lambda(u, v) \) equals the weight of \(\alpha_{uv} \) for all \(u, v \in U \). An immediate consequence of the definition is \(\lambda(u, v) \leq \lambda(x, y) \) for all leaves \(x, y \) of \(T_{uv} \). An ancestor tree can be found in \(O(|U| \text{MF}(n, m)) \) time [2].

3 Previous data structure

We give a quick sketch of the data structure of Conforti et al. The heart of their data structure exploits that edge-disjoint paths are effectively "composable".

Theorem 3.1 (Theorem 3.1 [3]) Given \(k \) edge-disjoint \(uv \)-paths and \(k \) edge-disjoint \(vw \)-paths with a total of \(m \) edges, a set of \(k \) edge-disjoint \(uv \)-paths can be found in \(O(m) \) time.

Remark For anyone familiar with the original proof would notice it actually obtain the bound \(O(m + k^2) \), where \(k^2 \) comes from the dummy edges that force a perfect stable matching between the paths. Fortunately, avoiding dummy edges is easy: find any stable matching and match the unmatched paths arbitrarily.

Every \(k \) edge-disjoint paths contain \(O(kn) \) edges, hence composing \(k \) edge-disjoint paths takes \(O(kn) \) time. One can construct an auxiliary graph \(H \), such that for each edge \(uv \) in \(H \), we precompute the maximum number of edge-disjoint \(uv \)-paths in \(G \) using any maximum flow algorithm. A query of \(k \) edge-disjoint \(v_1v_i \)-paths can be answered by a sequence of composition of \(k \) edge-disjoint \(v_1v_2 \)-paths, \(v_2v_3 \)-paths, \(\ldots \), \(v_{i-1}v_i \)-paths, where \(v_1, \ldots, v_l \)

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. chaoxu3@illinois.edu
is a path in H and $\lambda(v_i, v_{i+1}) \geq k$ for all $i \leq l - 1$. The total query time is therefore $O(knl)$. By augment a flow equivalent tree with Chazelle's semigroup product structure for free trees [1], it returns a graph H with $O(n)$ edges and at most $O(a(n))$ composition per query. The preprocessing time is $O(|H| \text{MF}(n, m)) = O(n \text{MF}(n, m))$ using $O(nm)$ space, and the query time is $O(kn\alpha(n))$.

4 Data structure

On the high level, our data structure is the same as the previous one: we precompute some edge-disjoint paths, and compose them during query time. The difference is the edge-disjoint paths are short, at most one composition per query and the implementation is a simple binary tree.

4.1 Composition of short edge-disjoint paths

It's easy to find examples where k edge-disjoint paths contain $\Omega(kn)$ edges, even returning the edge-disjoint path itself already exceed our bound. Fortunately, there are always short edge-disjoint paths. A set of k edge-disjoint paths is short if it contains at most $2\sqrt{kn}$ edges.

Theorem 4.1 There exist short $\lambda(s, t)$ edge-disjoint st-paths P_{st}, and they can be found in $O(\text{MF}(n, m))$ time. Moreover, the k shortest paths in P_{st} have a total of $O(\sqrt{kn})$ edges for all $k \leq \lambda(s, t)$.

Proof: Find any maximum 0-1 st-flow from s to t. There is a $O(m)$ time procedure to decycle the flow and then decompose the flow to unit flows along st-paths. Let P_{st} be the paths in the flow decomposition, then P_{st} fits the requirement. Indeed, any acyclic maximum st-flow in a unit capacity simple graph saturates at most $2\sqrt{\lambda(s, t)\alpha}$ edges [5].

The k shortest paths in P_{st} have total length at most

$$\frac{2\sqrt{\lambda(s, t)n}}{\lambda(s, t)} = k \frac{2n}{\sqrt{\lambda(s, t)}} \leq 2k \frac{n}{\sqrt{k}} = 2\sqrt{kn}.$$

\[\square\]

Short edge-disjoint paths are closed under our implementation of composition. Let f_{uw} denote some $\lambda(u, v)$ short edge-disjoint uv-paths. Let $\ell = \min(k, \lambda(u, w), \lambda(w, v))$. The previous two theorems imply $\text{COMPOSE}(f_{uw}, f_{vw}, k)$ in Figure 4.1 returns ℓ short edge-disjoint uv-paths. The algorithm runs in $O(\sqrt{\ell n})$ time.

4.2 Cache paths and queries

The algorithm first finds T, an ancestor tree of V, in $O(n \text{MF}(n, m))$ time [2]. If $k \leq \lambda(u, v)$, then there exist k edge-disjoint uw and vw-paths, where w is any leaf of T_{uv}.

For each internal node r of an ancestor tree, we can assign one single leaf w of r called a hub of r, such that for any other leaves u and v, either we have already precomputed edge-disjoint paths for uv, or we can compose edge-disjoint path of uw and vw. It turns out we can assign hubs in a way so we only need to precompute $O(n \log n)$ pairs of edge-disjoint paths.

Let $c(u)$, the heavier child, be the child of u in T with larger number of leaves. The heavier child is the root of the larger subtree. If both children have same number of leaves, then c break ties arbitrarily.

Let the hub of u be $h(u)$, and defined recursively:

$$h(u) = \begin{cases} u & \text{if } u \text{ is a leaf} \\ h(c(u)) & \text{otherwise.} \end{cases}$$

\[\text{Figure 4.1. } \text{Compose } f_{uw} \text{ and } f_{vw}.\]
h(u) is always a leaf of u. For every internal node v and each leaf u of v, the data structure saves maximum edge-disjoint h(v)u-paths.

We design a recursive function \text{CACHEFLOWS} to satisfy the above requirement. It maintains the invariant that if v is the input, then it saves flow \(f_{h(v)} \) for each u a leaf of v. For an internal node v with children \(v_1 \) and \(v_2 \), \text{CACHEFLOWS}(v) begins by running both \text{CACHEFLOWS}(v_1) and \text{CACHEFLOWS}(v_2). Assume \(v_2 \) is the heavier child, then \(h(v_2) = h(v) \), and \(f_{h(v_2)} \) is cached for all u a leaf of \(v_2 \). It remains to compute \(f_{h(v_1)} \) for all u a leaf of \(v_1 \). This can be done by composing \(f_{h(v_1)u} \) with \(f_{h(v_1)h(v)} \). All \(f_{h(v_1)u} \) has been computed due to the last call to \text{CACHEFLOWS}(v_1). Finding \(f_{h(v_1)h(v)} \) takes a single maximum flow computation. See Figure 4.2.

\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
(\(f_{uv} \) denote a global variable that stores a max st-flow) \\
\text{CACHEFLOWS}(v):
\end{tabular}
\end{center}
\begin{tabular}{l}
\text{if } v \text{ is an internal node} \\
\quad \text{if } v_1, v_2 \text{ are children of } v, \text{ where } v_2 \text{ is the heavier child} \\
\quad \text{CACHEFLOWS}(v_1) \\
\quad \text{CACHEFLOWS}(v_2) \\
\quad f_{h(v_1)h(v)} \leftarrow \text{MAXIMUMFLOW}(h(v_1), h(v)) \\
\quad \text{for all leaf } u \text{ of } v_1 \\
\quad f_{h(v_1)u} \leftarrow \text{COMPOSE}(f_{h(v_1)h(v)}, f_{h(v_1)h(v)}, \infty) \\
\text{else} \\
\quad \text{do nothing}
\end{tabular}
\end{figure}

Figure 4.2. Cache flows.

Let \(F \) be the set of pairs \(\{s, t\} \) such that we have cached an st-flow at the end of \text{CACHEFLOW}(r), where r is the root of the ancestor tree T. The size of \(F \) is an upper bound on the number of times the algorithm applied \text{COMPOSE}. Let \(\ell(v) \) be the number of leaves of the subtree rooted at v. Applying a standard heavy-path decomposition argument [7], \(|F| \) is bounded by

\[
\sum_{v \text{ an internal node of } T} \ell(v) - \ell(c(v)) = O(n \log n).
\]

In each recursive call of the algorithm, the dominating factor of the running time is the maximum flows and compositions. There are \(n-1 \) maximum flow computations each taking \(O(MF(n, m)) \) time, and \(O(|F|) = O(n \log n) \) compositions each taking \(O(m) \) time. The time spent on \text{CACHEFLOWS} is \(O(n MF(n, m) + mn \log n) \).

Because we cache \(O(n \log n) \) flows and each flow uses at most \(O(m) \) edges, the number of edges stored is bounded by \(O(mn \log n) \). A more careful analysis can produce a stronger bound. For fixed u and v, the number of edges in the flow is \(O(\sqrt{\lambda(u, v)n}) = O(\sqrt{\min\{\deg u, \deg v\}n}) \). The total number of edges is

\[
\sum_{\{u, v\} \in F} O(\sqrt{\min\{\deg u, \deg v\}n})
\]

For every cached flow \(f_{st} \), s is called a non-hub for \(f_{st} \) if s is not the hub of \(\alpha_{st} \). The main observation is that every leaf can partake as a non-hub for \(O(\log n) \) cached flows. Indeed, the number of times s occurs as a non-hub equals to the number of non-heavy child in the root to s path, which is \(O(\log n) \) [7]. We can charge the space to the vertex that acts as the non-hub. The total space used is therefore.

\[
\sum_{\{u, v\} \in F} O(\sqrt{\min\{\deg u, \deg v\}}) \leq O(\log n) \sum_{v \in V} \sqrt{\deg v}
\]

Using the fact that \(\sqrt{\cdot} \) is a concave function,

\[
\sum_{v \in V} \sqrt{\deg v} \leq \sum_{v \in V} \sqrt{\frac{2m}{n}} = O(\sqrt{mn}).
\]

Putting the above together shows the space usage is \(O(\sqrt{mn}^{1.5} \log n) \).

When querying vertices u and v for k edge-disjoint paths, the algorithm finds the hub \(w = h(\alpha_{uw}) \), and return the composition of k shortest edge-disjoint paths of \(f_{uw} \) and \(f_{vw} \). The query run time is dominated by the composing procedure. Composing the paths take time proportional to the total number of edges involved, which is \(O(\sqrt{k}n) \).
Theorem 4.2 There is a data structure that preprocesses an undirected simple graph G of n vertices and m edges in $O(n(MF(n, m) + m \log n))$ time, use $O(\sqrt{m}n^{1.5} \log n)$ space and answer queries for k edge-disjoint s-t-paths in $O(\sqrt{k}n)$ time.

Although there is no known non-trivial lower bound for $MF(n, m)$, every known maximum flow algorithm dominates $m \log n$ by at least a polynomial factor. It’s safe to assume the preprocessing time is n maximum flows. Using the state of art max flow algorithm by Duan [4], the preprocessing time is $\tilde{O}(n^{3.375})$.

Remark Often one is only interested in edge-disjoint paths between a set of n' terminal vertices $U \subseteq V$. We can find an ancestor tree for U and apply the rest of the algorithm without modification. The preprocessing time becomes $O(n'(MF(n, m) + m \log n'))$ and the data structure occupies $O(\sqrt{m'}n'n \log n')$ space, where m' is the sum of degree of vertices in U.

If there is an upper bound k_{max} on the query integer k, then all occurrences of m can be replaced by $k_{max} n$ using sparsification [6].

Acknowledgments We like to thank Chandra Chekuri for bringing the problem to our attention, and Hsien-Chih Chang, Jiahui Jiang, Urvashi Khandelwal and Vivek Madan for reading the draft copy.

References

