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The Subset Sum Problem

Classic problem.

One of Karp’'s original NP-hard problems.
[Karp '72]

Weakly NP-complete

Textbook DP algorithm due to Bellman that runs in O(nt)
pseudopolynomial time.
[Bellman '56]



Why pseudopolynomial time algorithm?

Faster pseudopolynomial time algorithm for subset sum implies
faster polynomial time algorithms for various problems.



As a subroutine:

- knapsack
- scheduling

- graph problems with cardinality constraints
In practice:

- power indices (Voting Theory)
- set-based queries (Database)

- Subset sum based keys (Security)
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Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: O(nt) — [Bellman '56]

- Fast for small maxS: O(n maxS) — [Pisinger '91]

- Fast for small o: O(c/%) — [Klinz et al. "99]

- Data structure: O(n maxS) — [Eppstein '97, Serang 14, 15]

- RAM Model implementation of Bellman: O(nt/logt) — [Pisinger
03]

- First poly space algorithm: C\)(n*‘t) — [Lokshtanov et al. 10]
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Our Contribution

Main Theorem [Koiliaris & Xu ‘17]. The subset sum problem can be
decided in O(min{\/nt,t*/3}) time.

Fastest deterministic pseudopolynomial time algorithm for the
problem.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in O(t), with
one-sided error probability 1/n.

[Bringmann "17]

Conditional lower bound: Subset sum solvable in O(poly(n)t'=¢) for
any e > 0 implies faster algorithms for a wide variety of problems
including set cover. [Bringmann "7]
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Variants: Addition in Z,,

Input: A set S C Zp, of n numbers a target t € Zy,.

Output: Is there a subset Tof Ssuch that 0, . x =1t?
Solvable in O(nm) time using Bellman'’s DP.

Theorem ([Koiliaris & Xu “17])
The subset sum problem in Z, can be decided in

O(min{v/nm, m>/*}) time.

Different from the algorithm in N!
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Variants: multiset

Input: 2n natural numbers X1, X2, X3, ...,Xn,b1,...,b, and a target
number t.
Output: Does there exist non-negative integers ¢, ..., C,, such that

Y cxi=tand ¢ < b?

- Solvable in O(nt) time directly. [Faaland ‘73]

- Reduces to subset sum with polylog factor blowup in near linear

time. [Lawler ‘79]
- If all b; = oo, then it's the coin change problem.
- O(nx;) time [Bocker and Liptak ‘07]

- O(t) time. [Bringmann "17]
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Variants: Subset sums with cardinality constraint

Input: A set S of n natural numbers x1, X, X3, ..., X,, cardinality
constraint k and target number t.

Output: Does there exists a subset of S of size k that sums to t?

- Solvable in O(knt) time by modifying Bellman’s DP.
- We can solve it in O(nt) time.
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that realizes the target?
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Variants: Return a solution

- Instead of the decision problem, what if we want the actual set
that realizes the target?

- Our algorithm handles it with polylog factor slow down.

- We can also count the number of solutions faster than the
standard dynamic programming algorithm.



Outline of the talk

We present two algorithms:

- Solve subset sum in N.

- Solve subset sum in Z,.

1
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All Subset Sums

To solve the subset sum problem, we will consider the following all
subset sums problem:

Given a set S of n natural numbers and an (upper bound) u, compute
all the realizable sums up to u.
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- eyl ={x,x+1,...,y} is the set of integers in the interval [x, y].
- [u] =[0..u].
- FortwosetsXand Y, X@Y={x+y|xeXandy e Y}.

- The set of all subset sums of S'is denoted by

»(S) = {Zt TCS}.

teT
Finding all subset sums of S up to u: compute 3(S) N [u].
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Straightforward divide-and-conquer algorithm for the all subset
sums problem:
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Divide and conquer

Fact. If Pand Q form a partition of a set S, then X(P) & X(Q) = X(S).

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

- Partition the set S into two sets
- Recursively compute their subset sums
- Combine them together with @.

14



Review of the Bellman’s dynamic programming algorithm

Input: A set S of n natural numbers xq, X2, X3,...,X, and an upper
bound u.

Algorithm:

s T T U{s+Xl|seTiq,s+x <u}

O(nu) time.



Alternative view

Input: A set S of n natural numbers xq, X2, X3, ..., X, and an upper
bound u.

Algorithm:
- return [u] N AL, T({x;}).

E({x}) ={0,x}.

16



Convolution algorithm

Theorem. Given A, B C [u], A ® B can be computed in

O(ulogu) = O(u) time.
Just use FFT



Convolution algorithm

Theorem. Given A, B C [u], A ® B can be computed in

O(ulogu) = O(u) time.
Just use FFT

Theorem. Given A, B C [u] x [v], A& B can be computed in
O(uvloguv) = O(uv) time.



Two algorithms for all subset sums

If S C [x..x + £], then we will show that 3(S) N [u] can be found in

- O(n(x + ¢)) time. (Algorithm 1)
- O((u/x)?¢) time. (Algorithm 2)



Two algorithms for all subset sums

If S C [x..x + £], then we will show that 3(S) N [u] can be found in
- O(n(x + ¢)) time. (Algorithm 1)
- O((u/x)?¢) time. (Algorithm 2)

We balance the running time of both algorithms to get the desired
result.



Algorithm 1



Algorithm 1: Proof and analysis

Lemma Given a set S of n numbers in [x..x 4+ £], one can compute the
set of all subset sums (S) in O(n(x + £)) time.
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Algorithm 1: Proof and analysis

Lemma Given a set S of n numbers in [x..x 4+ £], one can compute the
set of all subset sums X(S) in O(n(x + £)) time.

Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively ¥(L) and 3(R).
- The sets (L), 2(R) C [n(x+£)]. (L) ® Z(R) in O(n(x + £)) time.

T(n) = 2T(n/2) + O(n(x + ¢))

- Solves to T(n) = O(n(x + ¢))

19
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Algorithm 2: Idea

Lemma. Given a set S C [x..x + £] of size n, computing the set
%(S) N [u] takes O((u/x)*¢) time.
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Algorithm 2: Idea

Lemma. Given a set S C [x..x + £] of size n, computing the set
%(S) N [u] takes O((u/x)*¢) time.

Main idea If elements in X(S) are larger than u, we can throw it away.
Sum of any L%J + 1 elements is greater than u, then we only need
subset sums using size | 4] subsets.

Proof Sketch. Same algorithm:

1. Partition Sinto L and R
2. Compute 3(L) N [u] and X(R) N [u] recursively
3. Combine through (a smarter implementation of) .

20



Algorithm 2: A single recursive step
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Algorithm 2: A single recursive step

T S x+/
-—--}ooo—eo—0—0t0-0—0o—|--—--

/N
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Algorithm 2: A single recursive step

- ze X(L)Nul.

- Forsomel' CL,z=3% ) S=D e X+t TE]
U< Lu/x) = ke

- z=ix+j, where i€ [R],j € [¢R].
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Algorithm 2: A single recursive step

i € [k],j € [Ck]
2= @B g k:{gJ
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Algorithm 2: A single recursive step

Lift to 2D
i€ [k],j € K]
Z=il‘+j k= {HJ
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Algorithm 2: A single recursive step

Lift to 2D
i€ [k],j € K]
Z=il‘+j k= {HJ

= O((u/z)%) time

28



Algorithm 2: Run time analysis

Let T(n, ¢) be the running time of Algorithm 2 with input set
S C [x.x + £] of size n.
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Algorithm 2: Run time analysis

Let T(n, ¢) be the running time of Algorithm 2 with input set
S C [x.x + £] of size n.

bL+6 =20

T(n, &) = T(n/2,6,) + T(n/2,£,) + O(£(u/x)?)
— O(U(u/x)?)

29



Algorithm 3



Algorithm
ALLSUBSETSUM3(S, u):

- Partition [u] into intervals I = [ri_q..r; — 1] for 0 < i < k.
- LetS; < IinS.

- Compute X(Sp) using Algorithm 1.

- Compute X(S;) using Algorithm 2 for 1 < i < k.

- Return @on 3(S)).

30



Algorithm 3

- |

0 U

r; = \_QiTOJ S;=85nN [ri—l--ri = 1]
k = O(log u) n; = | S|
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Algorithm 3
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d| \\\\\ u
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0 .
So Find E(SO)

Algorithm 1 O(noro)
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Algorithm 3
LA ‘
|
u

Find E(Si)

S
Algorithm 2
u )?(ri = rim1)) = O(u?/ria)

Ol
83




Algorithm 3

e . |

0 U

Find »(s;) forall 1 <i<k
2 2

k u
2.0 0(.-)

rzl
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Algorithm 3: Analysis

- Find =(So) in O(noro) = O(min(n, ro)ro) time.
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* Find @f_,X(S;) in O(ku) = O(u) time.
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Algorithm 3: Analysis

- Find =(So) in O(noro) = O(min(n, ro)ro) time.

- Find 3(S1),..., 3(Sk) in O(u?/ro) time.

* Find @f_,X(S;) in O(ku) = O(u) time.

- Total running time O(u?/ro 4+ min(n, ro)ro + u).

- Set ry = u/+y/n, we get O(v/nu).
- Set ry = u?/3, we get O(u*/?).

35



There exist inputs x; < ... < Xp, such that any divide-and-conquer
algorithm that computes X(S) by

- add parenthesis to this expression
(%) D...dX(X),
- compute all the intermediate output,

takes Q(min(y/nt, t*/3)) time.

36



Subset sums in Z,




Overview of the result

Zm ={0,...,m —1}, the integers modulo m.
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Overview of the result

Zm ={0,...,m —1}, the integers modulo m.
Theorem
Let S C Zy be a set of size n. 3(S) can be found in

O(min(v/nm, m>/*)) time.

Not an adaptation of Algorithm 3.

37



The challenge

- Algorithm 3 throws away sums that fall outside [u].
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The challenge

- Algorithm 3 throws away sums that fall outside [u].

- All operations in Z, stays in Zn.
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Basic number theory definition/facts

Z}, = {x|x € Zpm, gcd(x, m) = 1}, the set of units of Zp,.
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Basic number theory definition/facts

7 = {X|x € Zn,gcd(x,m) = 1}, the set of units of Zp,.

Assume £ is large enough (Q(mmgfogm)) in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when
S C Z3,, and then apply divide and conquer depending on the
divisibility of the elements in S.

39



Subset sums in Z,,

Sczr,



A segment of length ¢ is a set of the form x[¢] = {0,x,2x,...,¢x}. We
denote X[¢] = {ix|x € X,i € [{]}.
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A segment of length ¢ is a set of the form x[¢] = {0,x,2x,...,¢x}. We
denote X[¢] = {ix|x € X,i € [{]}.

3(S) can be found quickly if S is covered by a segment.

Theorem

S C Zm is a n element subset of x[¢], then 2(S) can be found in O(n¢)
time.

40



The algorithm when inputis in Z?,

=3 X ={1,2,5}

1[4
S CZy 1 3(4|5]|6 10
\ / \
5 5?\55/

We partition the input by segments.

- Find X, such that S C X[/].
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The algorithm when inputis in Z?,
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200 ;
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S Sa Ss
We partition the input by segments.

- Find X, such that S C X[/].
- Create a partition {Sx|x € X} of S, such that Sx C x[/].
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The algorithm when inputis in Z?,

=3 X ={1,2,5}

200 ;
1{4]
sczn | [1] [8]4]s]s 10
N7 Nr—~—_—

S1 S Ss

We partition the input by segments.

- Find X, such that S C X[/].
- Create a partition {Sx|x € X} of S, such that Sx C x[/].
- return @, o X(5x).

41
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The running time:
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The algorithm when input is in Z;,

The running time:

- The time for finding X, say T(n, £, m)
- Find subset sums for X(Sx) takes O(|Sx|¢). The total time over all
Sx 1 D0 ex O(ISx|€) = O(nk).
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The algorithm when input is in Z;,

The running time:

- The time for finding X, say T(n, £, m)

- Find subset sums for X(Sx) takes O(|Sx|¢). The total time over all
Sx i S oyex O(Sx1€) = O(ne).

* Dyex Z(Sx) takes O(|X|m) time.

The total running time is O(T(n, £, m) + né + |X|m).
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The algorithm when input is in Z;,

The running time:

- The time for finding X, say T(n, £, m)

- Find subset sums for X(Sx) takes O(|Sx|¢). The total time over all
Sx i S oyex O(Sx1€) = O(ne).

* Dyex Z(Sx) takes O(|X|m) time.

The total running time is O(T(n, £, m) + n¢ + |X|m). We need to find a
small X that induces a cover of S, and we have to find one fast.

42



Covering S C Z;, by segments

Theorem
For any S C Zj, there exists a x € Z},, such that [S N x[€]| = Q(£]9)).
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Covering S C Z;, by segments

Theorem
For any S C Zj, there exists a x € Z},, such that [S N x[€]| = Q(£]9)).

- b e x[/] if there exists a € [¢] such that ax = b (mod m).
- ax=b (mod m) has exactly one solution if a,b € Z,.

- Each b € Z}, is covered by [¢] N Z;, segments: For each
a € (Y] NZz, there is a unique x such that b € x[].
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Covering S C Z;, by segments

Theorem
For any S C Zj, there exists a x € Z},, such that [S N x[€]| = Q(£]9)).

- b e x[/] if there exists a € [¢] such that ax = b (mod m).
- ax=b (mod m) has exactly one solution if a,b € Z,.

- Each b € Z}, is covered by [¢] N Z;, segments: For each
a € (Y] NZz, there is a unique x such that b € x[].

E] N Z7| l
b covered by x[/]] = —— = Q(—
uniforIr%XGZ;;[ i [ ” ‘Z;kn‘ (m)

- For any subset S C Zy,, there is a x[¢] that covers |S\% elements
in S in expectation.
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Cover S with segments

Algorithm
GREEDYSETCOVER(S C Z,)

1. Pick x[¢] such that |x[¢] N S| is maximized.
2. S« S\ x[{]
3. GREEDYSETCOVER(S)

Finds a cover of size O(} logn) in O(nf) time.
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Subset sums in Z*,

Theorem

All subset sums with input S C Z, can be solved in O(y/nm) time.

Proof.

O(T(n, £, m) 4+ nf + (%)m) =0

m2
— y4
€+n)

Let ¢ = L. O

S|
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Subset sums in Z*,

Theorem
All subset sums with input S C Z, can be solved in O(y/nm) time.

Proof.

O(T(n, £, m) 4+ nf + (%)m) =0

m2
— y4
€+n)

Let ¢ = % O
We can assume n = O(y/m).

Theorem ([Hamidoune, Llad & Serra 08])
IfS C 72 and |S| > 2v/m, then (S) = Zn.
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Subset sums in Z*,

Theorem
All subset sums with input S C Z, can be solved in O(y/nm) time.

Proof.

O(T(n,¢,m) 4+ nt + (%)m) = é(%z

+ nk)

Let £ = % O]
We can assume n = O(y/m).

Theorem ([Hamidoune, Llad & Serra 08])

If S C Z% and |S| > 2y/m, then 2(S) = Znm,.

Theorem
All subset sums in Zz, can be solved in O(min(v/nm, m>/*)) time.

45



Subset sums in Z,

SCZn



* Limd = {X:X € Zy and gcd(x,m)|d}.
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* Limd = {X:X € Zy and gcd(x,m)|d}.
Lt =L
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* Limd = {X:X € Zy and gcd(x,m)|d}.
* Ly = L.
* L = Zm,m~
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* Limd = {X:X € Zy and gcd(x,m)|d}.
* Ly = L.
* L = Zm,m~

We define ALLSUBSETSUMS(S, m, d) as an algorithm that finds all
subset sums of S'in Zp, if SC Zp 4
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* Limd = {X:X € Zy and gcd(x,m)|d}.
* Ly = L.
* L = Zm,m~

We define ALLSUBSETSUMS(S, m, d) as an algorithm that finds all
subset sums of S'in Zp, if SC Zp 4
We solved the case for ALLSUBSETSUMS(S, m, 1).

3(S) = ALLSUBSETSUMS(S, m, m)
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The algorithm for all subset sums in Z,,

- S/p={s/p:s€S,pls}
- S%p={s:seS,p fs}
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The algorithm for all subset sums in Z,,

©S/p={s/p:se€S,pls}
- S%p={s:seS,p fs}

Algorithm
ALLSUBSETSUMS(S, m, d):

1. d =1, use the previous algorithm.
2. p < the largest prime factor of d

3. [All elements in S divisible by p]
A + ALLSUBSETSUMS(S/p,m/p,d/p)

4. [All elements in S not divisible by p]
B < ALLSUBSETSUMS(S%p, m,d/p)

5 return (p-A) @ B
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Example recursion tree where S = Zg

S =17Zs

[o]1]2]3]4]5]
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Example recursion tree where S = Zg

S =17Zs

[o]1]2]3]4]5]

p=3,d=6
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Example recursion tree where S = Zg

S =17Zs

[o]1]2]3]4]5]

p=3,d=6 %Pl

[ 11]2] [4]s]
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Example recursion tree where S = Zg

S =17Zs

[o]1]2]3]4]5]

p=3,d=6 %pl \75\\\\\\\*

[ 11]2] [4]s] o] 1
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Example recursion tree where S = Zg

S =17Zs

[o]1]2]3]4]5]

p=3,d=6 %pl \75\\\\\\\*

[ 11]2] [4]s] o] 1

p=2,d=2
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Example recursion tree where S = Zg

S =17Zs

|0|1|2|3|4|5|

[ 11]2] [4]s]

L 1] | 5] | |1|2|
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Example recursion tree where S = Zg

S =17Zs

|0|1|2|3|4|5|

L 11]2] |4|5| [o]+]
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Example recursion tree where S = Zg

S =17Zs

[o]1]2]3]4]5]

p=3,d=6 %pl \75\\\\\\\*
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Example recursion tree where S = Zg

S =17Zs

[o]1]2]3]4]5]

p=3,d=6 %pl \75\\\\\\\*

Divisors d =6 do =3 d3=2 dys=1

56



Example recursion tree where S = Zg

S =7Zs
A

[o]1]2]3]4]s]
p=3d=6 %Pl@ N

[ [1]2] [4]5] O(logm)
p=2,d=2 %pl @ /p %pl @ /p _X_

[T T T Ts] [CIefe] [I4] [of
Divisors di =6 dy=3 dz=2 dy=1

|< o1(m) = O(mloglogm)

Ui(m) = Ed\m d'.
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Run time analysis: Leaves

Sl Sz Sg Sk

| | | | | _I ..
| | | H
dq ds ds dx

Compute 3(S;) for each i. |Sj| = n;. d; < m/iis the ith largest divisor
of m.

0> min(v/nid;, d*))
=0(>_ min(vmim/i, (m/i)*/*))

=0(min(v/nm, m**))
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Run time analysis: Internal nodes

d
—
fN
- 1
d d/p

- There are O(logm) levels.

. Each level, the time spenton @ is
(X gy @) = O(n(m)) = O(m).

- The total running time over internal nodes are O(m).
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Run time analysis

Theorem
All subset sums in Zn can be solved in O(min(v/nm, m°>/4)).
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Open Problems




Open Problems: Deterministic near linear time algorithm

Is there a deterministic O(t) time algorithm for the subset sum
problem matching its conditional lower bound?
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Open Problems: Output sensitive subset sum

Let k = |X(S) N [t]]. Assume kR < t.

- Known: subset sum in O(nk) time use Bellman’s DP algorithm.

- Can we obtain an algorithm with O(v/nk) running time?
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Open Problems: Covering Z,, by segments of length ¢

Let f(m, ¢) be the minimum number of segments of length ¢ required
to cover Zp,.
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Let f(m, ¢) be the minimum number of segments of length ¢ required
to cover Zp,.

Lower Bound: f(m, £) > [ 7]

Upper Bound:

Theorem ([Chen, Shparlinski & Winterhof “13])
 f(m, £) = O(F) if m is prime.

m1+o(1)

: f(m,é) =
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Open Problems: Covering Z,, by segments of length ¢

Let f(m, ¢) be the minimum number of segments of length ¢ required
to cover Zp,.

Lower Bound: f(m, £) > [ 7]
Upper Bound:

Theorem ([Chen, Shparlinski & Winterhof “13])
 f(m, £) = O(F) if m is prime.
14+0(1)
 f(m, ) = 1,
Theorem ([Koiliaris & Xu “17])
m1+o(1)

f(maé) = Uo(m) + O(m(m) logm/é) =
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Open Problems: Covering Z,, by segments of length ¢

Let f(m, ¢) be the minimum number of segments of length ¢ required
to cover Zp,.

Lower Bound: f(m, £) > [ 7]

Upper Bound:

Theorem ([Chen, Shparlinski & Winterhof “13])
 f(m, £) = O(F) if m is prime.

m1+o(1)

" flm, f) = T

Theorem ([Koiliaris & Xu “17])
f(m. £) = oo(m) + O(ar(m) log m/¢) = 2=
Conjecture: f(m, £) = O(7)
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Thank you
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