A Faster Pseudopolynomial Time Algorithm for Subset Sum

Konstantinos Koiliaris, **Chao Xu** June 6, 2017

University of Illinois, Urbana-Champaign

Input: A set *S* of *n* natural numbers $x_1, x_2, x_3, \ldots, x_n$ and a target number *t*.

Input: A set *S* of *n* natural numbers $x_1, x_2, x_3, \ldots, x_n$ and a target number *t*.

Output: Is there a subset *T* of *S* such that $\sum_{x_i \in T} x_i = t$?

One of Karp's original NP-hard problems.

[Karp '72]

One of Karp's original NP-hard problems.

[Karp '72]

Weakly NP-complete

One of Karp's original NP-hard problems.

[Karp '72]

Weakly NP-complete

Textbook DP algorithm due to Bellman that runs in *O(nt)* **pseudopolynomial** time.

[Bellman '56]

Faster pseudopolynomial time algorithm for subset sum implies faster polynomial time algorithms for various problems.

As a subroutine:

- knapsack
- scheduling
- graph problems with cardinality constraints

In practice:

- power indices (Voting Theory)
- set-based queries (Database)
- Subset sum based keys (Security)

• Original DP solution: O(nt) - [Bellman '56]

- Original DP solution: O(nt) [Bellman '56]
- Fast for small max S: O(n max S) [Pisinger '91]

- Original DP solution: O(nt) [Bellman '56]
- Fast for small max S: O(n max S) [Pisinger '91]
- Fast for small σ : $O(\sigma^{3/2}) [Klinz et al. '99]$

- Original DP solution: O(nt) [Bellman '56]
- Fast for small max S: O(n max S) [Pisinger '91]
- Fast for small σ : $O(\sigma^{3/2}) [Klinz et al. '99]$
- Data structure: $\tilde{O}(n \max S) [Eppstein '97, Serang '14, '15]$

- Original DP solution: O(nt) [Bellman '56]
- Fast for small max S: O(n max S) [Pisinger '91]
- Fast for small σ : $O(\sigma^{3/2}) [Klinz et al. '99]$
- Data structure: $\tilde{O}(n \max S) [Eppstein '97, Serang '14, '15]$
- RAM Model implementation of Bellman: O(nt/log t) [Pisinger '03]

- Original DP solution: O(nt) [Bellman '56]
- Fast for small max S: O(n max S) [Pisinger '91]
- Fast for small σ : $O(\sigma^{3/2}) [Klinz et al. '99]$
- Data structure: $\tilde{O}(n \max S) [Eppstein '97, Serang '14, '15]$
- RAM Model implementation of Bellman: O(nt/log t) [Pisinger '03]
- First poly space algorithm: $\tilde{O}(n^3t) [Lokshtanov et al. 10]$

Main Theorem [Koiliaris & Xu '17]. The subset sum problem can be decided in $\widetilde{O}(\min{\sqrt{nt}, t^{4/3}})$ time.

Main Theorem [Koiliaris & Xu '17]. The subset sum problem can be decided in $\tilde{O}(\min{\sqrt{nt}, t^{4/3}})$ time.

Fastest **deterministic** pseudopolynomial time algorithm for the problem.

Main Theorem [Koiliaris & Xu '17]. The subset sum problem can be decided in $\tilde{O}(\min{\sqrt{nt}, t^{4/3}})$ time.

Fastest **deterministic** pseudopolynomial time algorithm for the problem.

Concurrent to our work, Bringmann showed that if **randomization** is allowed the subset sum problem can be decided in $\tilde{O}(t)$, with one-sided error probability 1/n.

[Bringmann '17]

Main Theorem [Koiliaris & Xu '17]. The subset sum problem can be decided in $\tilde{O}(\min{\sqrt{nt}, t^{4/3}})$ time.

Fastest **deterministic** pseudopolynomial time algorithm for the problem.

Concurrent to our work, Bringmann showed that if **randomization** is allowed the subset sum problem can be decided in $\tilde{O}(t)$, with one-sided error probability 1/n.

[Bringmann '17]

Conditional lower bound: Subset sum solvable in $O(poly(n)t^{1-\epsilon})$ for any $\epsilon > 0$ implies faster algorithms for a wide variety of problems including set cover. [Bringmann '17]

Output: Is there a subset *T* of *S* such that $\sum_{x \in T} x = t$?

Output: Is there a subset *T* of *S* such that $\sum_{x \in T} x = t$? Solvable in O(nm) time using Bellman's DP.

Output: Is there a subset *T* of *S* such that $\sum_{x \in T} x = t$?

Solvable in O(nm) time using Bellman's DP.

Theorem ([Koiliaris & Xu '17]) The subset sum problem in \mathbb{Z}_m can be decided in $\widetilde{O}(\min\{\sqrt{nm}, m^{5/4}\})$ time.

Output: Is there a subset *T* of *S* such that $\sum_{x \in T} x = t$?

Solvable in O(nm) time using Bellman's DP.

Theorem ([Koiliaris & Xu '17]) The subset sum problem in \mathbb{Z}_m can be decided in $\widetilde{O}(\min\{\sqrt{nm}, m^{5/4}\})$ time.

Different from the algorithm in $\mathbb{N}!$

Output: Does there exist non-negative integers c_1, \ldots, c_n , such that $\sum_{i=1}^{n} c_i x_i = t$ and $c_i \le b_i$?

• Solvable in O(nt) time directly. [Faaland '73]

- Solvable in O(nt) time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler '79]

- Solvable in O(nt) time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler '79]
- If all $b_i = \infty$, then it's the coin change problem.

- Solvable in O(nt) time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler '79]
- If all $b_i = \infty$, then it's the coin change problem.
 - O(nx₁) time [Böcker and Lipták '07]

- Solvable in O(nt) time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler '79]
- If all $b_i = \infty$, then it's the coin change problem.
 - O(nx₁) time [Böcker and Lipták '07]
 - $\widetilde{O}(t)$ time. [Bringmann '17]

Input: A set S of *n* natural numbers $x_1, x_2, x_3, \ldots, x_n$, cardinality constraint *k* and target number *t*.

Output: Does there exists a subset of S of size k that sums to t?

• Solvable in O(knt) time by modifying Bellman's DP.

Input: A set S of *n* natural numbers $x_1, x_2, x_3, \ldots, x_n$, cardinality constraint *k* and target number *t*.

Output: Does there exists a subset of S of size k that sums to t?

- Solvable in O(knt) time by modifying Bellman's DP.
- We can solve it in $\tilde{O}(nt)$ time.

• Instead of the decision problem, what if we want the actual set that realizes the target?

- Instead of the decision problem, what if we want the actual set that realizes the target?
- Our algorithm handles it with polylog factor slow down.

- Instead of the decision problem, what if we want the actual set that realizes the target?
- Our algorithm handles it with polylog factor slow down.
- We can also count the number of solutions faster than the standard dynamic programming algorithm.

We present two algorithms:

- $\cdot\,$ Solve subset sum in $\mathbb N.$
- Solve subset sum in \mathbb{Z}_m .

Subset sums in $\ensuremath{\mathbb{N}}$
To solve the subset sum problem, we will consider the following all subset sums problem:

To solve the subset sum problem, we will consider the following all subset sums problem:

Given a set S of n natural numbers and an (upper bound) u, compute all the realizable sums up to u.

• $[x..y] = \{x, x + 1, ..., y\}$ is the set of integers in the interval [x, y].

- $[x..y] = \{x, x + 1, ..., y\}$ is the set of integers in the interval [x, y].
- [u] = [0..u].

- $[x..y] = \{x, x + 1, ..., y\}$ is the set of integers in the interval [x, y].
- [u] = [0..u].
- For two sets X and Y, $X \oplus Y = \{x + y \mid x \in X \text{ and } y \in Y\}.$

- $[x..y] = \{x, x + 1, ..., y\}$ is the set of integers in the interval [x, y].
- [u] = [0..u].
- For two sets X and Y, $X \oplus Y = \{x + y \mid x \in X \text{ and } y \in Y\}.$
- The set of all subset sums of S is denoted by

$$\boldsymbol{\Sigma}(S) = \left\{ \sum_{t \in T} t \mid T \subseteq S \right\}.$$

- $[x..y] = \{x, x + 1, ..., y\}$ is the set of integers in the interval [x, y].
- [u] = [0..u].
- For two sets X and Y, $X \oplus Y = \{x + y \mid x \in X \text{ and } y \in Y\}.$
- The set of all subset sums of S is denoted by

$$\boldsymbol{\Sigma}(S) = \left\{ \sum_{t \in T} t \mid T \subseteq S \right\}.$$

Finding all subset sums of S up to *u*: compute $\Sigma(S) \cap [u]$.

• Partition the set S into two sets

- Partition the set S into two sets
- Recursively compute their subset sums

- Partition the set S into two sets
- Recursively compute their subset sums
- Combine them together with \oplus .

Input: A set *S* of *n* natural numbers $x_1, x_2, x_3, \ldots, x_n$ and an upper bound *u*.

Algorithm:

- $T_0 \leftarrow \{0\}.$
- $T_i \leftarrow T_{i-1} \cup \{s + x_i | s \in T_{i-1}, s + x_i \le u\}.$

O(nu) time.

Input: A set S of *n* natural numbers $x_1, x_2, x_3, \ldots, x_n$ and an upper bound *u*.

Algorithm:

• return $[u] \cap \bigoplus_{i=1}^{n} \Sigma(\{x_i\}).$

 $\boldsymbol{\Sigma}(\{x\}) = \{0, x\}.$

Theorem. Given $A, B \subseteq [u], A \oplus B$ can be computed in $O(u \log u) = \tilde{O}(u)$ time.

Just use FFT

Theorem. Given $A, B \subseteq [u], A \oplus B$ can be computed in $O(u \log u) = \tilde{O}(u)$ time.

Just use FFT

Theorem. Given $A, B \subseteq [u] \times [v]$, $A \oplus B$ can be computed in $O(uv \log uv) = \tilde{O}(uv)$ time.

If S \subseteq [x..x + ℓ], then we will show that $\Sigma(S) \cap [u]$ can be found in

- $O(n(x + \ell))$ time. (Algorithm 1)
- $O((u/x)^2 \ell)$ time. (Algorithm 2)

If S \subseteq [x..x + ℓ], then we will show that $\Sigma(S) \cap [u]$ can be found in

- $O(n(x + \ell))$ time. (Algorithm 1)
- $O((u/x)^2 \ell)$ time. (Algorithm 2)

We balance the running time of both algorithms to get the desired result.

Algorithm 1

Proof Sketch.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\Sigma(L)$ and $\Sigma(R)$.

Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\Sigma(L)$ and $\Sigma(R)$.
- The sets $\Sigma(L), \Sigma(R) \subseteq [n(x+\ell)]$. $\Sigma(L) \oplus \Sigma(R)$ in $\tilde{O}(n(x+\ell))$ time.

Proof Sketch.

•

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\Sigma(L)$ and $\Sigma(R)$.
- The sets $\Sigma(L), \Sigma(R) \subseteq [n(x+\ell)]$. $\Sigma(L) \oplus \Sigma(R)$ in $\tilde{O}(n(x+\ell))$ time.

$$T(n) = 2T(n/2) + \tilde{O}(n(x + \ell))$$

Proof Sketch.

•

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\Sigma(L)$ and $\Sigma(R)$.
- The sets $\Sigma(L), \Sigma(R) \subseteq [n(x+\ell)]$. $\Sigma(L) \oplus \Sigma(R)$ in $\tilde{O}(n(x+\ell))$ time.

$$T(n) = 2T(n/2) + \tilde{O}(n(x+\ell))$$

• Solves to $T(n) = \tilde{O}(n(x + \ell))$

Algorithm 2

Lemma. Given a set $S \subseteq [x..x + \ell]$ of size n, computing the set $\Sigma(S) \cap [u]$ takes $\widetilde{O}((u/x)^2 \ell)$ time.

Lemma. Given a set $S \subseteq [x..x + \ell]$ of size n, computing the set $\Sigma(S) \cap [u]$ takes $\widetilde{O}((u/x)^2\ell)$ time.

Main idea If elements in $\Sigma(S)$ are larger than u, we can throw it away.

Lemma. Given a set $S \subseteq [x..x + \ell]$ of size *n*, computing the set $\Sigma(S) \cap [u]$ takes $\widetilde{O}((u/x)^2 \ell)$ time.

Main idea If elements in $\Sigma(S)$ are larger than u, we can throw it away. Sum of any $\lfloor \frac{u}{x} \rfloor + 1$ elements is greater than u, then we only need subset sums using size $\lfloor \frac{u}{x} \rfloor$ subsets. **Lemma.** Given a set $S \subseteq [x..x + \ell]$ of size *n*, computing the set $\Sigma(S) \cap [u]$ takes $\widetilde{O}((u/x)^2 \ell)$ time.

Main idea If elements in $\Sigma(S)$ are larger than u, we can throw it away. Sum of any $\lfloor \frac{u}{x} \rfloor + 1$ elements is greater than u, then we only need subset sums using size $\lfloor \frac{u}{x} \rfloor$ subsets.

Proof Sketch. Same algorithm:

- 1. Partition S into L and R
- 2. Compute $\Sigma(L) \cap [u]$ and $\Sigma(R) \cap [u]$ recursively
- 3. Combine through (a smarter implementation of) \oplus .

Algorithm 2: A single recursive step

Algorithm 2: A single recursive step

Algorithm 2: A single recursive step

• $z \in \Sigma(L) \cap [u]$.

- $z \in \Sigma(L) \cap [u]$.
- For some $L' \subseteq L$, $z = \sum_{s \in L'} s = \sum_{x+t \in L'} x + t$, $t \in [\ell]$.

- $z \in \Sigma(L) \cap [u]$.
- For some $L' \subseteq L$, $z = \sum_{s \in L'} s = \sum_{x+t \in L'} x + t$, $t \in [\ell]$.
- $\cdot |L'| \leq \lfloor u/x \rfloor = k.$

- $z \in \Sigma(L) \cap [u]$.
- For some $L' \subseteq L$, $z = \sum_{s \in L'} s = \sum_{x+t \in L'} x + t$, $t \in [\ell]$.
- $\cdot |L'| \leq \lfloor u/x \rfloor = k.$
- z = ix + j, where $i \in [k], j \in [\ell k]$.
$$i \in [k], j \in [\ell k]$$

$$z = ix + j \qquad k = \left\lfloor \frac{u}{x} \right\rfloor$$

$$\cap$$

$$\Sigma(L) \cap [u]$$

$$\Sigma(R) \cap [u]$$

Algorithm 2: A single recursive step

Algorithm 2: A single recursive step

Algorithm 2: A single recursive step

Let $T(n, \ell)$ be the running time of Algorithm 2 with input set $S \subseteq [x..x + \ell]$ of size *n*.

Let $T(n, \ell)$ be the running time of Algorithm 2 with input set $S \subseteq [x..x + \ell]$ of size n.

 $\ell_1+\ell_2=\ell.$

$$T(n, \ell) = T(n/2, \ell_1) + T(n/2, \ell_2) + \tilde{O}(\ell(u/x)^2)$$

= $\tilde{O}(\ell(u/x)^2)$

Algorithm 3

Algorithm

AllSubsetSum3(S, u):

- Partition [u] into intervals $I_i = [r_{i-1}..r_i 1]$ for $0 \le i \le k$.
- Let $S_i \leftarrow I_i \cap S$.
- Compute $\Sigma(S_0)$ using Algorithm 1.
- Compute $\Sigma(S_i)$ using Algorithm 2 for $1 \le i \le k$.
- Return $\bigoplus_{i=0}^{k} \Sigma(S_i)$.

Find
$$\Sigma(S_i)$$
 for all $1 \le i \le k$
$$\sum_{i=1}^k \tilde{O}(\frac{u^2}{r_{i-1}}) = \tilde{O}(\frac{u^2}{r_0})$$

34

• Find $\Sigma(S_0)$ in $\tilde{O}(n_0r_0) = \tilde{O}(\min(n, r_0)r_0)$ time.

- Find $\Sigma(S_0)$ in $\tilde{O}(n_0r_0) = \tilde{O}(\min(n, r_0)r_0)$ time.
- Find $\Sigma(S_1), \ldots, \Sigma(S_k)$ in $\tilde{O}(u^2/r_0)$ time.

- Find $\Sigma(S_0)$ in $\tilde{O}(n_0r_0) = \tilde{O}(\min(n, r_0)r_0)$ time.
- Find $\Sigma(S_1), \ldots, \Sigma(S_k)$ in $\tilde{O}(u^2/r_0)$ time.
- Find $\bigoplus_{i=0}^{k} \Sigma(S_i)$ in $\tilde{O}(ku) = \tilde{O}(u)$ time.

- Find $\Sigma(S_0)$ in $\tilde{O}(n_0r_0) = \tilde{O}(\min(n, r_0)r_0)$ time.
- Find $\Sigma(S_1), \ldots, \Sigma(S_k)$ in $\tilde{O}(u^2/r_0)$ time.
- Find $\oplus_{i=0}^{k} \Sigma(S_i)$ in $\tilde{O}(ku) = \tilde{O}(u)$ time.
- Total running time $\tilde{O}(u^2/r_0 + \min(n, r_0)r_0 + u)$.

- Find $\Sigma(S_0)$ in $\tilde{O}(n_0r_0) = \tilde{O}(\min(n, r_0)r_0)$ time.
- Find $\Sigma(S_1), \ldots, \Sigma(S_k)$ in $\tilde{O}(u^2/r_0)$ time.
- Find $\oplus_{i=0}^{k} \Sigma(S_i)$ in $\tilde{O}(ku) = \tilde{O}(u)$ time.
- Total running time $\tilde{O}(u^2/r_0 + \min(n, r_0)r_0 + u)$.
- Set $r_0 = u/\sqrt{n}$, we get $\tilde{O}(\sqrt{n}u)$.
- Set $r_0 = u^{2/3}$, we get $\tilde{O}(u^{4/3})$.

There exist inputs $x_1 < \ldots < x_n$, such that any divide-and-conquer algorithm that computes $\Sigma(S)$ by

add parenthesis to this expression

 $\Sigma(x_1) \oplus \ldots \oplus \Sigma(x_n),$

· compute all the intermediate output,

takes $\Omega(\min(\sqrt{nt}, t^{4/3}))$ time.

Subset sums in \mathbb{Z}_m

 $\mathbb{Z}_m = \{0, \ldots, m-1\}$, the integers modulo m.

 $\mathbb{Z}_m = \{0, \dots, m-1\}$, the integers modulo m. **Theorem** Let $S \subseteq \mathbb{Z}_m$ be a set of size n. $\Sigma(S)$ can be found in $\widetilde{O}(\min(\sqrt{nm}, m^{5/4}))$ time. $\mathbb{Z}_m = \{0, \dots, m-1\}$, the integers modulo m.

Theorem Let $S \subseteq \mathbb{Z}_m$ be a set of size n. $\Sigma(S)$ can be found in $\widetilde{O}(\min(\sqrt{nm}, m^{5/4}))$ time.

Not an adaptation of Algorithm 3.

• Algorithm 3 throws away sums that fall outside [*u*].

- Algorithm 3 throws away sums that fall outside [*u*].
- All operations in \mathbb{Z}_m stays in \mathbb{Z}_m .

 $\mathbb{Z}_m^* = \{x | x \in \mathbb{Z}_m, \gcd(x, m) = 1\}, \text{ the set of units of } \mathbb{Z}_m.$

 $\mathbb{Z}_m^* = \{x | x \in \mathbb{Z}_m, \gcd(x, m) = 1\}, \text{ the set of units of } \mathbb{Z}_m.$ Assume ℓ is large enough $(\Omega(m^{\frac{1}{\log \log m}}))$ in the remainder of the talk. $\mathbb{Z}_m^* = \{x | x \in \mathbb{Z}_m, \gcd(x, m) = 1\}$, the set of units of \mathbb{Z}_m .

Assume ℓ is large enough $(\Omega(m^{\frac{1}{\log \log m}}))$ in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when $S \subseteq \mathbb{Z}_m^*$, and then apply divide and conquer depending on the divisibility of the elements in *S*.

Subset sums in \mathbb{Z}_m

 $S \subseteq \mathbb{Z}_m^*$

A segment of length ℓ is a set of the form $x[\ell] = \{0, x, 2x, \dots, \ell x\}$. We denote $X[\ell] = \{ix|x \in X, i \in [\ell]\}$.

A segment of length ℓ is a set of the form $x[\ell] = \{0, x, 2x, \dots, \ell x\}$. We denote $X[\ell] = \{ix | x \in X, i \in [\ell]\}$.

 $\Sigma(S)$ can be found quickly if S is covered by a segment.

Theorem

 $S \subseteq \mathbb{Z}_m$ is a n element subset of $x[\ell]$, then $\Sigma(S)$ can be found in $\tilde{O}(n\ell)$ time.

The algorithm when input is in \mathbb{Z}_m^*

We partition the input by segments.

• Find X, such that $S \subseteq X[\ell]$.

The algorithm when input is in \mathbb{Z}_m^*

We partition the input by segments.

- Find X, such that $S \subseteq X[\ell]$.
- Create a partition $\{S_x | x \in X\}$ of *S*, such that $S_x \subseteq x[\ell]$.

The algorithm when input is in \mathbb{Z}_m^*

We partition the input by segments.

- Find X, such that $S \subseteq X[\ell]$.
- Create a partition $\{S_x | x \in X\}$ of S, such that $S_x \subseteq x[\ell]$.
- return $\bigoplus_{x \in X} \Sigma(S_x)$.

The running time:

The running time:

• The time for finding X, say $T(n, \ell, m)$

The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\Sigma(S_x)$ takes $\tilde{O}(|S_x|\ell)$.
The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\Sigma(S_x)$ takes $\tilde{O}(|S_x|\ell)$. The total time over all S_x is $\sum_{x \in X} \tilde{O}(|S_x|\ell) = \tilde{O}(n\ell)$.

The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\Sigma(S_x)$ takes $\tilde{O}(|S_x|\ell)$. The total time over all S_x is $\sum_{x \in X} \tilde{O}(|S_x|\ell) = \tilde{O}(n\ell)$.
- $\bigoplus_{x \in X} \Sigma(S_x)$ takes $\tilde{O}(|X|m)$ time.

The total running time is $\tilde{O}(T(n, \ell, m) + n\ell + |X|m)$.

The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\Sigma(S_x)$ takes $\tilde{O}(|S_x|\ell)$. The total time over all S_x is $\sum_{x \in X} \tilde{O}(|S_x|\ell) = \tilde{O}(n\ell)$.
- $\bigoplus_{x \in X} \Sigma(S_x)$ takes $\tilde{O}(|X|m)$ time.

The total running time is $\tilde{O}(T(n, \ell, m) + n\ell + |X|m)$. We need to find a small X that induces a cover of S, and we have to find one fast.

For any $S \subseteq \mathbb{Z}_m^*$, there exists a $x \in \mathbb{Z}_m^*$, such that $|S \cap x[\ell]| = \Omega(\frac{\ell}{m}|S|)$.

• $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.

- $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.
- · $ax \equiv b \pmod{m}$ has exactly one solution if $a, b \in \mathbb{Z}_m^*$.

- $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.
- $ax \equiv b \pmod{m}$ has exactly one solution if $a, b \in \mathbb{Z}_m^*$.
- Each $b \in \mathbb{Z}_m^*$ is covered by $[\ell] \cap \mathbb{Z}_m^*$ segments: For each $a \in [\ell] \cap \mathbb{Z}_m^*$, there is a unique *x* such that $b \in x[\ell]$.

٠

- $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.
- $ax \equiv b \pmod{m}$ has exactly one solution if $a, b \in \mathbb{Z}_m^*$.
- Each $b \in \mathbb{Z}_m^*$ is covered by $[\ell] \cap \mathbb{Z}_m^*$ segments: For each $a \in [\ell] \cap \mathbb{Z}_m^*$, there is a unique *x* such that $b \in x[\ell]$.

$$\mathbb{E}_{\text{uniform } x \in \mathbb{Z}_m^*} [b \text{ covered by } x[\ell]] = \frac{|[\ell] \cap \mathbb{Z}_m^*|}{|\mathbb{Z}_m^*|} = \Omega(\frac{\ell}{m})$$

٠

For any $S \subseteq \mathbb{Z}_m^*$, there exists a $x \in \mathbb{Z}_m^*$, such that $|S \cap x[\ell]| = \Omega(\frac{\ell}{m}|S|)$.

- $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.
- $ax \equiv b \pmod{m}$ has exactly one solution if $a, b \in \mathbb{Z}_m^*$.
- Each $b \in \mathbb{Z}_m^*$ is covered by $[\ell] \cap \mathbb{Z}_m^*$ segments: For each $a \in [\ell] \cap \mathbb{Z}_m^*$, there is a unique x such that $b \in x[\ell]$.

$$\mathbb{E}_{\text{uniform } x \in \mathbb{Z}_m^*}[b \text{ covered by } x[\ell]] = \frac{|[\ell] \cap \mathbb{Z}_m^*|}{|\mathbb{Z}_m^*|} = \Omega(\frac{\ell}{m})$$

• For any subset $S \subseteq \mathbb{Z}_m^*$, there is a $x[\ell]$ that covers $|S|\frac{\ell}{m}$ elements in S in expectation.

Algorithm

 $\mathsf{GREEDYSETCOVER}(S \subseteq \mathbb{Z}_m^*)$

- 1. Pick $x[\ell]$ such that $|x[\ell] \cap S|$ is maximized.
- 2. $S \leftarrow S \setminus x[\ell]$
- **3**. GREEDYSETCOVER(S)

Finds a cover of size $O(\frac{m}{\ell} \log n)$ in $O(n\ell)$ time.

All subset sums with input $S \subseteq \mathbb{Z}_m^*$ can be solved in $\tilde{O}(\sqrt{n}m)$ time.

Proof.

$$\tilde{O}(T(n,\ell,m)+n\ell+(\frac{m}{\ell})m)=\tilde{O}(\frac{m^2}{\ell}+n\ell)$$

Let $\ell = \frac{m}{\sqrt{n}}$.

All subset sums with input $S \subseteq \mathbb{Z}_m^*$ can be solved in $\tilde{O}(\sqrt{n}m)$ time.

Proof.

$$\tilde{O}(T(n,\ell,m)+n\ell+(\frac{m}{\ell})m)=\tilde{O}(\frac{m^2}{\ell}+n\ell)$$

Let $\ell = \frac{m}{\sqrt{n}}$.

We can assume $n = O(\sqrt{m})$.

All subset sums with input $S \subseteq \mathbb{Z}_m^*$ can be solved in $\tilde{O}(\sqrt{n}m)$ time.

Proof.

$$\tilde{O}(T(n,\ell,m)+n\ell+(\frac{m}{\ell})m)=\tilde{O}(\frac{m^2}{\ell}+n\ell)$$

Let $\ell = \frac{m}{\sqrt{n}}$.

We can assume $n = O(\sqrt{m})$.

Theorem ([Hamidoune, Llad & Serra 08]) If $S \subseteq \mathbb{Z}_m^*$ and $|S| \ge 2\sqrt{m}$, then $\Sigma(S) = \mathbb{Z}_m$.

All subset sums with input $S \subseteq \mathbb{Z}_m^*$ can be solved in $\tilde{O}(\sqrt{n}m)$ time.

Proof.

$$\tilde{O}(T(n,\ell,m)+n\ell+(\frac{m}{\ell})m)=\tilde{O}(\frac{m^2}{\ell}+n\ell)$$

Let $\ell = \frac{m}{\sqrt{n}}$.

We can assume $n = O(\sqrt{m})$.

Theorem ([Hamidoune, Llad & Serra 08]) If $S \subseteq \mathbb{Z}_m^*$ and $|S| \ge 2\sqrt{m}$, then $\Sigma(S) = \mathbb{Z}_m$.

Theorem

All subset sums in \mathbb{Z}_m^* can be solved in $\tilde{O}(\min(\sqrt{nm}, m^{5/4}))$ time.

Subset sums in \mathbb{Z}_m

 $S \subseteq \mathbb{Z}_m$

• $\mathbb{Z}_{m,d} = \{x : x \in \mathbb{Z}_m \text{ and } gcd(x,m) | d\}.$

- $\mathbb{Z}_{m,d} = \{x : x \in \mathbb{Z}_m \text{ and } gcd(x,m)|d\}.$
- $\mathbb{Z}_m^* = \mathbb{Z}_{m,1}$.

- $\mathbb{Z}_{m,d} = \{x : x \in \mathbb{Z}_m \text{ and } gcd(x,m)|d\}.$
- $\mathbb{Z}_m^* = \mathbb{Z}_{m,1}$.
- $\mathbb{Z}_m = \mathbb{Z}_{m,m}$.

- $\mathbb{Z}_{m,d} = \{x : x \in \mathbb{Z}_m \text{ and } gcd(x,m)|d\}.$
- $\mathbb{Z}_m^* = \mathbb{Z}_{m,1}$.
- $\mathbb{Z}_m = \mathbb{Z}_{m,m}$.

We define ALLSUBSETSUMS(S, m, d) as an algorithm that finds all subset sums of S in \mathbb{Z}_m , if $S \subseteq \mathbb{Z}_{m,d}$

- $\mathbb{Z}_{m,d} = \{x : x \in \mathbb{Z}_m \text{ and } gcd(x,m)|d\}.$
- $\mathbb{Z}_m^* = \mathbb{Z}_{m,1}$.
- $\mathbb{Z}_m = \mathbb{Z}_{m,m}$.

We define ALLSUBSETSUMS(S, m, d) as an algorithm that finds all subset sums of S in \mathbb{Z}_m , if $S \subseteq \mathbb{Z}_{m,d}$

We solved the case for ALLSUBSETSUMS(S, m, 1).

 $\Sigma(S) = ALLSUBSETSUMS(S, m, m)$

The algorithm for all subset sums in \mathbb{Z}_m

- $S/p = \{s/p : s \in S, p|s\}$
- $S\%p = \{s : s \in S, p \not| s\}$

The algorithm for all subset sums in \mathbb{Z}_m

- $S/p = \{s/p : s \in S, p|s\}$
- $S\%p = \{s : s \in S, p \not| s\}$

Algorithm

ALLSUBSETSUMS(S, m, d):

- 1. d = 1, use the previous algorithm.
- 2. $p \leftarrow$ the largest prime factor of d
- 3. [All elements in *S* divisible by p] $A \leftarrow ALLSUBSETSUMS(S/p, m/p, d/p)$
- 4. [All elements in *S* not divisible by p] $B \leftarrow ALLSUBSETSUMS(S\%p, m, d/p)$
- 5. return $(p \cdot A) \oplus B$

$$S = \mathbb{Z}_6$$

 0
 1
 2
 3
 4
 5

$$S = \mathbb{Z}_6$$

 0
 1
 2
 3
 4
 5

p = 3, d = 6

$$S = \mathbb{Z}_{6}$$

$$p = 3, d = 6$$

$$y = 3, d = 6$$

$$y = 4 + 5$$

$$\sigma_i(m) = \sum_{d|m} d^i$$
.

Run time analysis: Leaves

Compute $\Sigma(S_i)$ for each *i*. $|S_i| = n_i$. $d_i \le m/i$ is the *i*th largest divisor of *m*.

$$\tilde{O}(\sum_{i} \min(\sqrt{n_{i}}d_{i}, d_{i}^{5/4})) = \tilde{O}(\sum_{i} \min(\sqrt{n_{i}}m/i, (m/i)^{5/4})) = \tilde{O}(\min(\sqrt{n}m, m^{5/4}))$$

Run time analysis: Internal nodes

- There are $O(\log m)$ levels.
- Each level, the time spent on \oplus is $\tilde{O}(\sum_{d|m} d) = \tilde{O}(\sigma_1(m)) = \tilde{O}(m).$
- The total running time over internal nodes are $\tilde{O}(m)$.

All subset sums in \mathbb{Z}_m can be solved in $\tilde{O}(\min(\sqrt{nm}, m^{5/4}))$.

Open Problems
Is there a deterministic $\tilde{O}(t)$ time algorithm for the subset sum problem matching its conditional lower bound?

Let $k = |\Sigma(S) \cap [t]|$. Assume $k \ll t$.

- Known: subset sum in O(nk) time use Bellman's DP algorithm.
- Can we obtain an algorithm with $\widetilde{O}(\sqrt{nk})$ running time?

Open Problems: Covering \mathbb{Z}_m by segments of length ℓ

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_m .

Open Problems: Covering \mathbb{Z}_m by segments of length ℓ

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_m .

Lower Bound: $f(m, \ell) \geq \left\lceil \frac{m}{\ell} \right\rceil$

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_m .

Lower Bound: $f(m, \ell) \geq \left\lceil \frac{m}{\ell} \right\rceil$

Upper Bound:

Theorem ([Chen, Shparlinski & Winterhof '13])

- $f(m, \ell) = O(\frac{m}{\ell})$ if m is prime.
- $f(m,\ell) = \frac{m^{1+o(1)}}{\sqrt{\ell}}.$

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_m .

Lower Bound: $f(m, \ell) \geq \left\lceil \frac{m}{\ell} \right\rceil$

Upper Bound:

Theorem ([Chen, Shparlinski & Winterhof '13])

- $f(m, \ell) = O(\frac{m}{\ell})$ if m is prime.
- $f(m,\ell) = \frac{m^{1+o(1)}}{\sqrt{\ell}}.$

Theorem ([Koiliaris & Xu '17])

 $f(m,\ell) = \sigma_0(m) + O(\sigma_1(m)\log m/\ell) = \frac{m^{1+o(1)}}{\ell}$

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_m .

Lower Bound: $f(m, \ell) \geq \left\lceil \frac{m}{\ell} \right\rceil$

Upper Bound:

Theorem ([Chen, Shparlinski & Winterhof '13])

- $f(m, \ell) = O(\frac{m}{\ell})$ if m is prime.
- $f(m,\ell) = \frac{m^{1+o(1)}}{\sqrt{\ell}}.$

Theorem ([Koiliaris & Xu '17])

 $f(m, \ell) = \sigma_0(m) + O(\sigma_1(m) \log m/\ell) = \frac{m^{1+o(1)}}{\ell}$ Conjecture: $f(m, \ell) = O(\frac{m}{\ell})$

Thank you