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The Subset Sum Problem

Classic problem.

One of Karp’s original NP-hard problems.
[Karp ’ ]

4eakly NP-complete

Textbook DP algorithm due to Bellman that runs in O(nt)
pseudopolynomial time.

[Bellman ’ ]



4hy pseudopolynomial time algorithm?

Faster pseudopolynomial time algorithm for subset sum implies
faster polynomial time algorithms for various problems.



Applications

As a subroutine:

• knapsack
• scheduling
• graph problems with cardinality constraints

In practice:

• power indices (3oting Theory)
• set-based queries (Database)
• Subset sum based keys (Security)



Previous 4ork: Deterministic pseudopolynomial algorithms

• Original DP solution: O(nt) — [Bellman ’ ]

• Fast for small max S: O nmax S — [Pisinger ’ ]

• Fast for small : O — [Klinz et al. ’ ]

• Data structure: O nmax S — [Eppstein ’ , Serang ’ , ’ ]

• RAM Model implementation of Bellman: O nt log t — [Pisinger
’ ]

• First poly space algorithm: O n t — [Lokshtanov et al. ’ ]
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Our Contribution

Main Theorem [Koiliaris & 9u ‘ ]. The subset sum problem can be
decided in Õ

(
min

{√
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Fastest deterministic pseudopolynomial time algorithm for the
problem.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in O t , with
one-sided error probability n.

[Bringmann ’ ]

Conditional lower bound: Subset sum solvable in O poly n t for
any implies faster algorithms for a wide variety of problems
including set cover. [Bringmann ’ ]



Our Contribution

Main Theorem [Koiliaris & 9u ‘ ]. The subset sum problem can be
decided in Õ
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Input: n natural numbers x , x , x , . . . , xn,b , . . . ,bn and a target
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• Reduces to subset sum with polylog factor blowup in near linear
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3ariants: Subset sums with cardinality constraint

Input: A set S of n natural numbers x , x , x , . . . , xn, cardinality
constraint k and target number t.

Output: Does there exists a subset of S of size k that sums to t?

• Solvable in O(knt) time by modifying Bellman’s DP.

• 4e can solve it in O nt time.
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3ariants: Return a solution
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that realizes the target?

• Our algorithm handles it with polylog factor slow down.
• 4e can also count the number of solutions faster than the
standard dynamic programming algorithm.
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Outline of the talk

4e present two algorithms:

• Solve subset sum in N.
• Solve subset sum in Zm.



Subset sums in N
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To solve the subset sum problem, we will consider the following all
subset sums problem:

Given a set S of n natural numbers and an (upper bound) u, compute
all the realizable sums up to u.
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Divide and conquer

Fact. If P and Q form a partition of a set S, then Σ(P)⊕Σ(Q) = Σ(S).

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

• Partition the set S into two sets
• Recursively compute their subset sums
• Combine them together with .
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Divide and conquer

Fact. If P and Q form a partition of a set S, then Σ(P)⊕Σ(Q) = Σ(S).

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

• Partition the set S into two sets
• Recursively compute their subset sums
• Combine them together with ⊕.



Review of the Bellman’s dynamic programming algorithm

Input: A set S of n natural numbers x , x , x , . . . , xn and an upper
bound u.

Algorithm:

• T ← { }.
• Ti ← Ti− ∪ {s+ xi|s ∈ Ti− , s+ xi ≤ u}.

O(nu) time.



Alternative view

Input: A set S of n natural numbers x , x , x , . . . , xn and an upper
bound u.

Algorithm:

• return [u] ∩⊕n
i= Σ({xi}).

Σ({x}) = { , x}.



Convolution algorithm

Theorem. Given A,B ⊆ [u], A⊕ B can be computed in
O(u logu) = Õ(u) time.

Just use FFT

Theorem. Given A B u v , A B can be computed in
O uv loguv O uv time.



Convolution algorithm

Theorem. Given A,B ⊆ [u], A⊕ B can be computed in
O(u logu) = Õ(u) time.

Just use FFT

Theorem. Given A,B ⊆ [u]× [v], A⊕ B can be computed in
O(uv loguv) = Õ(uv) time.



Two algorithms for all subset sums

If S ⊆ [x..x+ ℓ], then we will show that Σ(S) ∩ [u] can be found in

• O(n(x+ ℓ)) time. (Algorithm )
• O((u/x) ℓ) time. (Algorithm )

4e balance the running time of both algorithms to get the desired
result.
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Algorithm : Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L and R .

• The sets L R n x . L R in O n x time.
•

T n T n O n x

• Solves to T n O n x
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Algorithm : Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively Σ(L) and Σ(R).

• The sets Σ(L),Σ(R) ⊆ [n(x+ ℓ)]. Σ(L)⊕Σ(R) in Õ(n(x+ ℓ)) time.
•
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Algorithm : Idea

Lemma. Given a set S ⊆ [x..x+ ℓ] of size n, computing the set
Σ(S) ∩ [u] takes Õ

(
(u/x) ℓ

)
time.

Main idea If elements in S are larger than u, we can throw it away.
Sum of any u

x elements is greater than u, then we only need
subset sums using size u

x subsets.

Proof Sketch. Same algorithm:

. Partition S into L and R

. Compute L u and R u recursively

. Combine through (a smarter implementation of) .
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Algorithm : A single recursive step

• z ∈ Σ(L) ∩ [u].
• For some L′ ⊆ L, z = ∑

s∈L′ s =
∑

x+t∈L′ x+ t, t ∈ [ℓ].
• |L′| ≤ ⌊u/x⌋ = k.
• z = ix+ j, where i ∈ [k], j ∈ [ℓk].



Algorithm : A single recursive step

∈∈

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

k =

j

u

x

k

k =

j

u

x

k

z = ix+ jz = ix+ j



Algorithm : A single recursive step

∈∈

ΦΦ (i, j)(i, j)

Lift to 2D

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

k =

j

u

x

k

k =

j

u

x

k

z = ix+ jz = ix+ j



Algorithm : A single recursive step

∈∈

ΦΦ (i, j)(i, j)

Lift to 2D
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−1
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x
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u
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Õ((u/x)2`)Õ((u/x)2`)
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Algorithm : Run time analysis

Let T(n, ℓ) be the running time of Algorithm with input set
S ⊆ [x..x+ ℓ] of size n.

ℓ + ℓ = ℓ.

T(n, ℓ) = T(n/ , ℓ ) + T(n/ , ℓ ) + Õ(ℓ(u/x) )

= Õ(ℓ(u/x) )
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Algorithm
AllSubsetSum (S,u):

• Partition [u] into intervals Ii = [ri− ..ri − ] for ≤ i ≤ k.
• Let Si ← Ii ∩ S.
• Compute Σ(S ) using Algorithm .
• Compute Σ(Si) using Algorithm for ≤ i ≤ k.
• Return

⊕k
i= Σ(Si).
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r0r0 r1r1 r2r2 rk−1rk−1 rk =rk =

ri = b2ir0cri = b2ir0c Si = S ∩ [ri−1..ri − 1]Si = S ∩ [ri−1..ri − 1]

k = O(log u)k = O(log u) ni = |Si|ni = |Si|
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Algorithm 2

Find

. . .. . .

ririri−1ri−1

Σ(Si)Σ(Si)

Õ((
u

ri−1

)2(ri − ri−1)) = Õ(u2/ri−1)Õ((
u

ri−1

)2(ri − ri−1)) = Õ(u2/ri−1)

SiSi



Algorithm

00 uu

. . .. . .

r0r0 rk−1rk−1 rk =rk =

Find

. . .. . .

Σ(Si)Σ(Si) for all 1 ≤ i ≤ k1 ≤ i ≤ k

kX

i=1

Õ(
u2

ri−1

) = Õ(
u2

r0
)

kX

i=1

Õ(
u2

ri−1

) = Õ(
u2

r0
)
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• Total running time O u r min n r r u .

• Set r u n, we get O nu .
• Set r u , we get O u .
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Algorithm : Analysis

• Find Σ(S ) in Õ(n r ) = Õ(min(n, r )r ) time.
• Find Σ(S ), . . . ,Σ(Sk) in Õ(u /r ) time.
• Find ⊕ki= Σ(Si) in Õ(ku) = Õ(u) time.
• Total running time Õ(u /r +min(n, r )r + u).

• Set r = u/
√
n, we get Õ(

√
nu).

• Set r = u / , we get Õ(u / ).



Lower bound?

There exist inputs x < . . . < xn, such that any divide-and-conquer
algorithm that computes Σ(S) by

• add parenthesis to this expression

Σ(x )⊕ . . .⊕Σ(xn),

• compute all the intermediate output,

takes Ω(min(
√
nt, t / )) time.



Subset sums in Zm



Overview of the result

Zm = { , . . . ,m− }, the integers modulo m.

Theorem
Let S m be a set of size n. S can be found in
O min nm m time.

Not an adaptation of Algorithm .
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The algorithm consists of a black box for solving subset sums when
S m, and then apply divide and conquer depending on the
divisibility of the elements in S.
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Basic number theory definition/facts

Z
∗
m = {x|x ∈ Zm, gcd(x,m) = }, the set of units of Zm.

Assume ℓ is large enough (Ω(m log logm )) in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when
S ⊆ Z

∗
m, and then apply divide and conquer depending on the

divisibility of the elements in S.



Subset sums in Zm

S ⊆ Z
∗

m



Segments

A segment of length ℓ is a set of the form x[ℓ] = { , x, x, . . . , ℓx}. 4e
denote X[ℓ] = {ix|x ∈ X, i ∈ [ℓ]}.

S can be found quickly if S is covered by a segment.

Theorem
S m is a n element subset of x , then S can be found in O n
time.



Segments

A segment of length ℓ is a set of the form x[ℓ] = { , x, x, . . . , ℓx}. 4e
denote X[ℓ] = {ix|x ∈ X, i ∈ [ℓ]}.

Σ(S) can be found quickly if S is covered by a segment.

Theorem
S ⊆ Zm is a n element subset of x[ℓ], then Σ(S) can be found in Õ(nℓ)
time.



The algorithm when input is in Z
∗
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S1S1 S2S2 S5S5
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4e partition the input by segments.

• Find X, such that S ⊆ X[ℓ].

• Create a partition Sx x X of S, such that Sx x .
• return x X Sx .
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4e partition the input by segments.

• Find X, such that S ⊆ X[ℓ].
• Create a partition {Sx|x ∈ X} of S, such that Sx ⊆ x[ℓ].
• return

⊕
x∈XΣ(Sx).
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The running time:

• The time for finding X, say T n m
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The total running time is O T n m n X m . 4e need to find a
small X that induces a cover of S, and we have to find one fast.
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• b x if there exists a such that ax b mod m .
• ax b mod m has exactly one solution if a b m.
• Each b m is covered by m segments: For each
a m, there is a unique x such that b x .

•

uniform x m

b covered by x m

m m

• For any subset S m, there is a x that covers S m elements
in S in expectation.
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Cover S with segments

Algorithm
GreedySetCover(S ⊆ Z

∗
m)

. Pick x[ℓ] such that |x[ℓ] ∩ S| is maximized.

. S← S \ x[ℓ]

. GreedySetCover(S)

Finds a cover of size O(mℓ logn) in O(nℓ) time.



Subset sums in Z
∗

m

Theorem
All subset sums with input S ⊆ Z

∗
m can be solved in Õ(

√
nm) time.

Proof.

Õ(T(n, ℓ,m) + nℓ+ (
m
ℓ
)m) = Õ(m

ℓ
+ nℓ)

Let ℓ = m√
n .

4e can assume n O m .

Theorem ([Hamidoune, Llad & Serra ])
If S m and S m, then S m.

Theorem
All subset sums in m can be solved in O min nm m time.
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Definitions

• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.
• Z∗

m = Zm, .
• Zm = Zm,m.

4e define AllSubsetSums(S,m,d) as an algorithm that finds all
subset sums of S in Zm, if S ⊆ Zm,d

4e solved the case for AllSubsetSums(S,m, ).

Σ(S) = AllSubsetSums(S,m,m)



The algorithm for all subset sums in Zm

• S/p = {s/p : s ∈ S,p|s}
• S%p = {s : s ∈ S,p ̸ |s}

Algorithm
AllSubsetSums S m d :

. d , use the previous algorithm.

. p the largest prime factor of d

. [All elements in S divisible by p]
A AllSubsetSums S p m p d p

. [All elements in S not divisible by p]
B AllSubsetSums S p m d p

. return p A B



The algorithm for all subset sums in Zm

• S/p = {s/p : s ∈ S,p|s}
• S%p = {s : s ∈ S,p ̸ |s}

Algorithm
AllSubsetSums(S,m,d):

. d = , use the previous algorithm.

. p← the largest prime factor of d

. [All elements in S divisible by p]
A← AllSubsetSums(S/p,m/p,d/p)

. [All elements in S not divisible by p]
B← AllSubsetSums(S%p,m,d/p)

. return (p · A)⊕ B
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Example recursion tree where S = Z

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2 1 0

S = Z6S = Z6

/p/p

%p%p

%p%p %p%p /p/p

/p/p

2 4 3 01 5

⊕⊕
⊕⊕

⊕⊕

Leaves

Internal

DivisorsDivisors d1 = 6d1 = 6 d2 = 3d2 = 3 d3 = 2d3 = 2 d4 = 1d4 = 1

Levels

O(logm)O(logm)

Total size σ1(m) = O(m log logm)σ1(m) = O(m log logm)

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2

σi(m) =
∑

d|m di.



Run time analysis: Leaves

d1d1 d2d2 d3d3

. . .. . .

dkdk

S1S1 S2S2 S3S3 SkSk

Compute Σ(Si) for each i. |Si| = ni. di ≤ m/i is the ith largest divisor
of m.

Õ(
∑

i

min(
√
nidi,d

/
i ))

=Õ(
∑

i

min(
√
nim/i, (m/i) / ))

=Õ(min(
√
nm,m / ))



Run time analysis: Internal nodes

⊕⊕

dd

dd d/pd/p

• There are O(logm) levels.
• Each level, the time spent on ⊕ is
Õ(

∑
d|m d) = Õ(σ (m)) = Õ(m).

• The total running time over internal nodes are Õ(m).



Run time analysis

Theorem
All subset sums in Zm can be solved in Õ(min(

√
nm,m / )).



Open Problems



Open Problems: Deterministic near linear time algorithm

Is there a deterministic Õ(t) time algorithm for the subset sum
problem matching its conditional lower bound?



Open Problems: Output sensitive subset sum

Let k = |Σ(S) ∩ [t]|. Assume k≪ t.

• Known: subset sum in O(nk) time use Bellman’s DP algorithm.
• Can we obtain an algorithm with Õ(

√
nk) running time?



Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f m m

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ ])

• f m O m if m is prime.

• f m m o .

Theorem ([Koiliaris & 9u ‘ ])

f m m O m logm m o

Conjecture: f m O m
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Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f(m, ℓ) ≥
⌈m

ℓ

⌉

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ ])

• f(m, ℓ) = O(mℓ ) if m is prime.

• f(m, ℓ) = m +o( )
√
ℓ
.

Theorem ([Koiliaris & 9u ‘ ])

f(m, ℓ) = σ (m) + O(σ (m) logm/ℓ) = m +o( )

ℓ

Conjecture: f(m, ℓ) = O(mℓ )



Thank you
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