A Faster Pseudopolynomial Time Algorithm for Subset Sum

Konstantinos Koiliaris, Chao Xu
June 6, 2017
University of Illinois, Urbana-Champaign

The Subset Sum Problem

Input: A set S of n natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ and a target number t.

The Subset Sum Problem

Input: A set S of n natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ and a target number t.

Output: Is there a subset T of S such that $\sum_{x_{i} \in T} x_{i}=t$?

The Subset Sum Problem

Classic problem.

The Subset Sum Problem

Classic problem.
One of Karp's original NP-hard problems.
[Karp '72]

The Subset Sum Problem

Classic problem.
One of Karp's original NP-hard problems.
[Karp '72]
Weakly NP-complete

The Subset Sum Problem

Classic problem.
One of Karp's original NP-hard problems.
[Karp '72]
Weakly NP-complete
Textbook DP algorithm due to Bellman that runs in O(nt) pseudopolynomial time.
[Bellman '56]

Why pseudopolynomial time algorithm?

Faster pseudopolynomial time algorithm for subset sum implies faster polynomial time algorithms for various problems.

Applications

As a subroutine:

- knapsack
- scheduling
- graph problems with cardinality constraints

In practice:

- power indices (Voting Theory)
- set-based queries (Database)
- Subset sum based keys (Security)

Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(n t)$ - [Bellman '56]

Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: O(nt) - [Bellman '56]
- Fast for small max S: O(n max S) - [Pisinger '91]

Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(n t)$ - [Bellman '56]
- Fast for small max S: O(n max S) - [Pisinger '91]

Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(n t)$ - [Bellman '56]
- Fast for small max S: O(n max S) - [Pisinger '91]
- Fast for small $\left.\sigma: O\left(\sigma^{3 / 2}\right)-[K l i n z ~ e t ~ a l . ~ ' 99] ~\right] ~$

Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(n t)$ - [Bellman '56]
- Fast for small max S: O(n max S) - [Pisinger '91]

- Data structure: $\widetilde{O}(n \max S)$ - [Eppstein '97, Serang '14, '15]
- RAM Model implementation of Bellman: $O(n t / \log t)-[$ Pisinger '03]

Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(n t)$ - [Bellman '56]
- Fast for small max S: O(n max S) - [Pisinger '91]
- Fast for small $\left.\sigma: O\left(\sigma^{3 / 2}\right)-[K l i n z ~ e t ~ a l . ~ ' 99] ~\right] ~$

- RAM Model implementation of Bellman: $O(n t / \log t)-[$ Pisinger '03]
- First poly space algorithm: $\widetilde{O}\left(n^{3} t\right)-$ [Lokshtanov et al. '10]

Our Contribution

Main Theorem [Koiliaris \& Xu '17]. The subset sum problem can be decided in $\widetilde{O}\left(\min \left\{\sqrt{n} t, t^{4 / 3}\right\}\right)$ time.

Our Contribution

Main Theorem [Koiliaris \& Xu '17]. The subset sum problem can be decided in $\widetilde{O}\left(\min \left\{\sqrt{n} t, t^{4 / 3}\right\}\right)$ time.
Fastest deterministic pseudopolynomial time algorithm for the problem.

Our Contribution

Main Theorem [Koiliaris \& Xu '17]. The subset sum problem can be decided in $\widetilde{O}\left(\min \left\{\sqrt{n} t, t^{4 / 3}\right\}\right)$ time.

Fastest deterministic pseudopolynomial time algorithm for the problem.

Concurrent to our work, Bringmann showed that if randomization is allowed the subset sum problem can be decided in $\widetilde{O}(t)$, with one-sided error probability $1 / n$.
[Bringmann '17]

Our Contribution

Main Theorem [Koiliaris \& Xu '17]. The subset sum problem can be decided in $\widetilde{O}\left(\min \left\{\sqrt{n} t, t^{4 / 3}\right\}\right)$ time.

Fastest deterministic pseudopolynomial time algorithm for the problem.

Concurrent to our work, Bringmann showed that if randomization is allowed the subset sum problem can be decided in $\widetilde{O}(t)$, with one-sided error probability $1 / n$.
[Bringmann '17]
Conditional lower bound: Subset sum solvable in $O\left(p o l y(n) t^{1-\epsilon}\right)$ for any $\epsilon>0$ implies faster algorithms for a wide variety of problems including set cover. [Bringmann '17]

Variants: Addition in \mathbb{Z}_{m}

Input: A set $S \subseteq \mathbb{Z}_{m}$ of n numbers a target $t \in \mathbb{Z}_{m}$.
Output: Is there a subset T of S such that $\sum_{x \in T} x=t$?

Variants: Addition in \mathbb{Z}_{m}

Input: A set $S \subseteq \mathbb{Z}_{m}$ of n numbers a target $t \in \mathbb{Z}_{m}$.
Output: Is there a subset T of S such that $\sum_{x \in T} x=t$?
Solvable in $O(\mathrm{~nm})$ time using Bellman's DP.

Variants: Addition in \mathbb{Z}_{m}

Input: A set $S \subseteq \mathbb{Z}_{m}$ of n numbers a target $t \in \mathbb{Z}_{m}$.
Output: Is there a subset T of S such that $\sum_{x \in T} x=t$?
Solvable in $O(n m)$ time using Bellman's DP.
Theorem ([Koiliaris \& Xu '17])
The subset sum problem in \mathbb{Z}_{m} can be decided in
$\widetilde{O}\left(\min \left\{\sqrt{n} m, m^{5 / 4}\right\}\right)$ time.

Variants: Addition in \mathbb{Z}_{m}

Input: A set $S \subseteq \mathbb{Z}_{m}$ of n numbers a target $t \in \mathbb{Z}_{m}$.
Output: Is there a subset T of S such that $\sum_{x \in T} x=t$?
Solvable in $O(n m)$ time using Bellman's DP.
Theorem ([Koiliaris \& Xu '17])
The subset sum problem in \mathbb{Z}_{m} can be decided in
$\widetilde{O}\left(\min \left\{\sqrt{n} m, m^{5 / 4}\right\}\right)$ time.
Different from the algorithm in \mathbb{N} !

Variants: multiset

Input: $2 n$ natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, b_{1}, \ldots, b_{n}$ and a target number t.

Output: Does there exist non-negative integers c_{1}, \ldots, c_{n}, such that $\sum_{i=1}^{n} c_{i} x_{i}=t$ and $c_{i} \leq b_{i}$?

Variants: multiset

Input: $2 n$ natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, b_{1}, \ldots, b_{n}$ and a target number t.
Output: Does there exist non-negative integers c_{1}, \ldots, c_{n}, such that $\sum_{i=1}^{n} c_{i} x_{i}=t$ and $c_{i} \leq b_{i}$?

- Solvable in $O(n t)$ time directly. [Faaland '73]

Variants: multiset

Input: $2 n$ natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, b_{1}, \ldots, b_{n}$ and a target number t.

Output: Does there exist non-negative integers c_{1}, \ldots, c_{n}, such that $\sum_{i=1}^{n} c_{i} x_{i}=t$ and $c_{i} \leq b_{i}$?

- Solvable in $O(n t)$ time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler '79]

Variants: multiset

Input: $2 n$ natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, b_{1}, \ldots, b_{n}$ and a target number t.

Output: Does there exist non-negative integers c_{1}, \ldots, c_{n}, such that $\sum_{i=1}^{n} c_{i} x_{i}=t$ and $c_{i} \leq b_{i}$?

- Solvable in $O(n t)$ time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler '79]
- If all $b_{i}=\infty$, then it's the coin change problem.

Variants: multiset

Input: $2 n$ natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, b_{1}, \ldots, b_{n}$ and a target number t.

Output: Does there exist non-negative integers c_{1}, \ldots, c_{n}, such that $\sum_{i=1}^{n} c_{i} x_{i}=t$ and $c_{i} \leq b_{i}$?

- Solvable in $O(n t)$ time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler "79]
- If all $b_{i}=\infty$, then it's the coin change problem.
- $O\left(n x_{1}\right)$ time [Böcker and Lipták ‘07]

Variants: multiset

Input: $2 n$ natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, b_{1}, \ldots, b_{n}$ and a target number t.

Output: Does there exist non-negative integers c_{1}, \ldots, c_{n}, such that $\sum_{i=1}^{n} c_{i} x_{i}=t$ and $c_{i} \leq b_{i}$?

- Solvable in $O(n t)$ time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler "79]
- If all $b_{i}=\infty$, then it's the coin change problem.
- $O\left(n x_{1}\right)$ time [Böcker and Lipták ‘07]
- $\widetilde{O}(t)$ time. [Bringmann '17]

Variants: Subset sums with cardinality constraint

Input: A set S of n natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, cardinality constraint k and target number t.

Output: Does there exists a subset of S of size k that sums to t ?

- Solvable in $O(k n t)$ time by modifying Bellman's DP.

Variants: Subset sums with cardinality constraint

Input: A set S of n natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, cardinality constraint k and target number t.

Output: Does there exists a subset of S of size k that sums to t ?

- Solvable in $O(k n t)$ time by modifying Bellman's DP.
- We can solve it in $\tilde{O}(n t)$ time.

Variants: Return a solution

- Instead of the decision problem, what if we want the actual set that realizes the target?

Variants: Return a solution

- Instead of the decision problem, what if we want the actual set that realizes the target?
- Our algorithm handles it with polylog factor slow down.

Variants: Return a solution

- Instead of the decision problem, what if we want the actual set that realizes the target?
- Our algorithm handles it with polylog factor slow down.
- We can also count the number of solutions faster than the standard dynamic programming algorithm.

Outline of the talk

We present two algorithms:

- Solve subset sum in \mathbb{N}.
- Solve subset sum in \mathbb{Z}_{m}.

Subset sums in \mathbb{N}

All Subset Sums

To solve the subset sum problem, we will consider the following all subset sums problem:

All Subset Sums

To solve the subset sum problem, we will consider the following all subset sums problem:

Given a set S of n natural numbers and an (upper bound) u, compute all the realizable sums up to u.

Notations

$\cdot[x . . y]=\{x, x+1, \ldots, y\}$ is the set of integers in the interval $[x, y]$.

Notations

- $[x . . y]=\{x, x+1, \ldots, y\}$ is the set of integers in the interval $[x, y]$.
- $[u]=[0 . . u]$.

Notations

- $[x . . y]=\{x, x+1, \ldots, y\}$ is the set of integers in the interval $[x, y]$.
- $[u]=[0 . . u]$.
- For two sets X and $Y, X \oplus Y=\{x+y \mid x \in X$ and $y \in Y\}$.

Notations

- $[x . . y]=\{x, x+1, \ldots, y\}$ is the set of integers in the interval $[x, y]$.
- $[u]=[0 . . u]$.
- For two sets X and $Y, X \oplus Y=\{x+y \mid x \in X$ and $y \in Y\}$.
- The set of all subset sums of S is denoted by

$$
\Sigma(S)=\left\{\sum_{t \in T} t \mid T \subseteq S\right\}
$$

Notations

$\cdot[x . . y]=\{x, x+1, \ldots, y\}$ is the set of integers in the interval $[x, y]$.

- $[u]=[0 . . u]$.
- For two sets X and $Y, X \oplus Y=\{x+y \mid x \in X$ and $y \in Y\}$.
- The set of all subset sums of S is denoted by

$$
\Sigma(S)=\left\{\sum_{t \in T} t \mid T \subseteq S\right\}
$$

Finding all subset sums of S up to u : compute $\boldsymbol{\Sigma}(S) \cap[u]$.

Divide and conquer

Fact. If P and Q form a partition of a set S, then $\boldsymbol{\Sigma}(P) \oplus \boldsymbol{\Sigma}(Q)=\boldsymbol{\Sigma}(S)$.
Straightforward divide-and-conquer algorithm for the all subset sums problem:

Divide and conquer

Fact. If P and Q form a partition of a set S, then $\boldsymbol{\Sigma}(P) \oplus \boldsymbol{\Sigma}(Q)=\boldsymbol{\Sigma}(S)$.
Straightforward divide-and-conquer algorithm for the all subset sums problem:

- Partition the set S into two sets

Divide and conquer

Fact. If P and Q form a partition of a set S, then $\boldsymbol{\Sigma}(P) \oplus \boldsymbol{\Sigma}(Q)=\boldsymbol{\Sigma}(S)$.
Straightforward divide-and-conquer algorithm for the all subset sums problem:

- Partition the set S into two sets
- Recursively compute their subset sums

Divide and conquer

Fact. If P and Q form a partition of a set S, then $\boldsymbol{\Sigma}(P) \oplus \boldsymbol{\Sigma}(Q)=\boldsymbol{\Sigma}(S)$.
Straightforward divide-and-conquer algorithm for the all subset sums problem:

- Partition the set S into two sets
- Recursively compute their subset sums
- Combine them together with \oplus.

Review of the Bellman's dynamic programming algorithm

Input: A set S of n natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ and an upper bound u.

Algorithm:

- $T_{0} \leftarrow\{0\}$.
- $T_{i} \leftarrow T_{i-1} \cup\left\{s+x_{i} \mid s \in T_{i-1}, s+x_{i} \leq u\right\}$.
$O(n u)$ time.

Alternative view

Input: A set S of n natural numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ and an upper bound u.

Algorithm:

- return $[u] \cap \bigoplus_{i=1}^{n} \Sigma\left(\left\{x_{i}\right\}\right)$.
$\boldsymbol{\Sigma}(\{x\})=\{0, x\}$.

Convolution algorithm

Theorem. Given $A, B \subseteq[u], A \oplus B$ can be computed in $O(u \log u)=\tilde{O}(u)$ time.

Just use FFT

Convolution algorithm

Theorem. Given $A, B \subseteq[u], A \oplus B$ can be computed in $O(u \log u)=\tilde{O}(u)$ time.

Just use FFT
Theorem. Given $A, B \subseteq[u] \times[v], A \oplus B$ can be computed in $O(u v \log u v)=$ Õ $(u v)$ time.

Two algorithms for all subset sums

If $S \subseteq[x . . x+\ell]$, then we will show that $\boldsymbol{\Sigma}(S) \cap[u]$ can be found in

- $O(n(x+\ell))$ time. (Algorithm 1)
- $O\left((u / x)^{2} \ell\right)$ time. (Algorithm 2)

Two algorithms for all subset sums

If $S \subseteq[x . . x+\ell]$, then we will show that $\boldsymbol{\Sigma}(S) \cap[u]$ can be found in

- $O(n(x+\ell))$ time. (Algorithm 1)
- $O\left((u / x)^{2} \ell\right)$ time. (Algorithm 2)

We balance the running time of both algorithms to get the desired result.

Algorithm 1

Algorithm 1: Proof and analysis

Lemma Given a set S of n numbers in $[x . . x+\ell]$, one can compute the set of all subset sums $\boldsymbol{\Sigma}(S)$ in $\tilde{O}(n(x+\ell))$ time.

Algorithm 1: Proof and analysis

Lemma Given a set S of n numbers in $[x . . x+\ell]$, one can compute the set of all subset sums $\boldsymbol{\Sigma}(S)$ in $\tilde{O}(n(x+\ell))$ time. Proof Sketch.

Algorithm 1: Proof and analysis

Lemma Given a set S of n numbers in $[x . . x+\ell]$, one can compute the set of all subset sums $\boldsymbol{\Sigma}(S)$ in $\tilde{O}(n(x+\ell))$ time. Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\boldsymbol{\Sigma}(L)$ and $\boldsymbol{\Sigma}(R)$.

Algorithm 1: Proof and analysis

Lemma Given a set S of n numbers in $[x . . x+\ell]$, one can compute the set of all subset sums $\boldsymbol{\Sigma}(S)$ in $\tilde{O}(n(x+\ell))$ time.

Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\boldsymbol{\Sigma}(L)$ and $\boldsymbol{\Sigma}(R)$.
- The sets $\boldsymbol{\Sigma}(L), \boldsymbol{\Sigma}(R) \subseteq[n(x+\ell)]$. $\boldsymbol{\Sigma}(L) \oplus \boldsymbol{\Sigma}(R)$ in $\tilde{O}(n(x+\ell))$ time.

Algorithm 1: Proof and analysis

Lemma Given a set S of n numbers in $[x . . x+\ell]$, one can compute the set of all subset sums $\boldsymbol{\Sigma}(S)$ in $\tilde{O}(n(x+\ell))$ time.

Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\boldsymbol{\Sigma}(L)$ and $\boldsymbol{\Sigma}(R)$.
- The sets $\boldsymbol{\Sigma}(L), \boldsymbol{\Sigma}(R) \subseteq[n(x+\ell)]$. $\boldsymbol{\Sigma}(L) \oplus \boldsymbol{\Sigma}(R)$ in $\tilde{O}(n(x+\ell))$ time.

$$
T(n)=2 T(n / 2)+\tilde{O}(n(x+\ell))
$$

Algorithm 1: Proof and analysis

Lemma Given a set S of n numbers in $[x . . x+\ell]$, one can compute the set of all subset sums $\boldsymbol{\Sigma}(S)$ in $\tilde{O}(n(x+\ell))$ time.

Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\boldsymbol{\Sigma}(L)$ and $\boldsymbol{\Sigma}(R)$.
- The sets $\boldsymbol{\Sigma}(L), \boldsymbol{\Sigma}(R) \subseteq[n(x+\ell)]$. $\boldsymbol{\Sigma}(L) \oplus \boldsymbol{\Sigma}(R)$ in $\tilde{O}(n(x+\ell))$ time.

$$
T(n)=2 T(n / 2)+\tilde{O}(n(x+\ell))
$$

- Solves to $T(n)=\tilde{O}(n(x+\ell))$

Algorithm 2

Algorithm 2: Idea

Lemma. Given a set $S \subseteq[x . . x+\ell]$ of size n, computing the set $\Sigma(S) \cap[u]$ takes $\widetilde{O}\left((u / x)^{2} \ell\right)$ time.

Algorithm 2: Idea

Lemma. Given a set $S \subseteq[x . . x+\ell]$ of size n, computing the set $\Sigma(S) \cap[u]$ takes $\widetilde{O}\left((u / x)^{2} \ell\right)$ time.
Main idea If elements in $\boldsymbol{\Sigma}(S)$ are larger than u, we can throw it away.

Algorithm 2: Idea

Lemma. Given a set $S \subseteq[x . . x+\ell]$ of size n, computing the set $\Sigma(S) \cap[u]$ takes $\widetilde{O}\left((u / x)^{2} \ell\right)$ time.
Main idea If elements in $\boldsymbol{\Sigma}(S)$ are larger than u, we can throw it away. Sum of any $\left\lfloor\frac{u}{x}\right\rfloor+1$ elements is greater than u, then we only need subset sums using size $\left\lfloor\frac{u}{x}\right\rfloor$ subsets.

Algorithm 2: Idea

Lemma. Given a set $S \subseteq[x . . x+\ell]$ of size n, computing the set $\Sigma(S) \cap[u]$ takes $\widetilde{O}\left((u / x)^{2} \ell\right)$ time.
Main idea If elements in $\boldsymbol{\Sigma}(S)$ are larger than u, we can throw it away. Sum of any $\left\lfloor\frac{u}{x}\right\rfloor+1$ elements is greater than u, then we only need subset sums using size $\left\lfloor\frac{u}{x}\right\rfloor$ subsets.
Proof Sketch. Same algorithm:

1. Partition S into L and R
2. Compute $\boldsymbol{\Sigma}(L) \cap[u]$ and $\boldsymbol{\Sigma}(R) \cap[u]$ recursively
3. Combine through (a smarter implementation of) \oplus.

Algorithm 2: A single recursive step

Algorithm 2: A single recursive step

Algorithm 2: A single recursive step

Algorithm 2: A single recursive step

- $z \in \boldsymbol{\Sigma}(L) \cap[u]$.

Algorithm 2: A single recursive step

- $z \in \boldsymbol{\Sigma}(L) \cap[u]$.
- For some $L^{\prime} \subseteq L, z=\sum_{s \in L^{\prime}} s=\sum_{x+t \in L^{\prime}} x+t, t \in[\ell]$.

Algorithm 2: A single recursive step

- $z \in \boldsymbol{\Sigma}(L) \cap[u]$.
- For some $L^{\prime} \subseteq L, z=\sum_{s \in L^{\prime}} s=\sum_{x+t \in L^{\prime}} x+t, t \in[\ell]$.
- $\left|L^{\prime}\right| \leq\lfloor u / x\rfloor=k$.

Algorithm 2: A single recursive step

- $z \in \boldsymbol{\Sigma}(L) \cap[u]$.
- For some $L^{\prime} \subseteq L, z=\sum_{s \in L^{\prime}} s=\sum_{x+t \in L^{\prime}} x+t, t \in[\ell]$.
- $\left|L^{\prime}\right| \leq\lfloor u / x\rfloor=k$.
$\cdot z=i x+j$, where $i \in[k], j \in[\ell k]$.

Algorithm 2: A single recursive step

$$
\begin{aligned}
& i \in[k], j \in[\ell k] \\
& z=i x+j \quad k=\left\lfloor\frac{u}{x}\right\rfloor \\
& \\
& \quad \cap \\
& \Sigma(L) \cap[u] \\
& \Sigma(R) \cap[u]
\end{aligned}
$$

Algorithm 2: A single recursive step

$$
\begin{aligned}
& \text { Lift to 2D } \\
& \begin{array}{c}
i \in[k], j \in[\ell k] \\
z=i x+j
\end{array} \xrightarrow{k=\left\lfloor\frac{u}{x}\right\rfloor} \quad(i, j) \\
& \pi \\
& \Sigma(L) \cap[u] \\
& \Sigma(R) \cap[u]
\end{aligned}
$$

Algorithm 2: A single recursive step

$$
\begin{aligned}
& \text { Lift to 2D } \\
& \underset{\substack{i \in[k], j \in[\ell k] \\
z=i x+j}}{\substack{ \\
k=\left\lfloor\frac{u}{x}\right\rfloor}}(i, j) \\
& \text { m } \\
& \Sigma(L) \cap[u] \quad \Phi \quad A=\Phi(\Sigma(L) \cap[u]) \\
& \Sigma(R) \cap[u] \\
& B=\Phi(\Sigma(R) \cap[u]) \\
& A, B \subseteq[k] \times[\ell k]
\end{aligned}
$$

Algorithm 2: A single recursive step

$$
\begin{aligned}
& \text { Lift to 2D } \\
& \underset{z=[k], j \in[\ell k]}{z=i x+j} \xrightarrow{k=\left\lfloor\frac{u}{x}\right\rfloor}(i, j) \\
& \pi \\
& \begin{array}{l}
\Sigma(L) \cap[u] \\
\Sigma(R) \cap[u]
\end{array} \quad \Phi \quad \begin{array}{l}
A=\Phi(\Sigma(L) \cap[u]) \\
B=\Phi(\Sigma(R) \cap[u])
\end{array} \\
& A, B \subseteq[k] \times[\ell k] \\
& \Sigma(L) \oplus \Sigma(R) \underset{\Phi^{-1}}{\Perp} A \oplus B \\
& \cap[u] \\
& \tilde{O}\left(\ell k^{2}\right)=\tilde{O}\left((u / x)^{2} \ell\right) \text { time }
\end{aligned}
$$

Algorithm 2: Run time analysis

Let $T(n, \ell)$ be the running time of Algorithm 2 with input set $S \subseteq[x . . x+\ell]$ of size n.

Algorithm 2: Run time analysis

Let $T(n, \ell)$ be the running time of Algorithm 2 with input set $S \subseteq[x . . x+\ell]$ of size n.
$\ell_{1}+\ell_{2}=\ell$.

$$
\begin{aligned}
T(n, \ell) & =T\left(n / 2, \ell_{1}\right)+T\left(n / 2, \ell_{2}\right)+\tilde{O}\left(\ell(u / x)^{2}\right) \\
& =\tilde{O}\left(\ell(u / x)^{2}\right)
\end{aligned}
$$

Algorithm 3

Algorithm 3

Algorithm

AllSubsetSum3(S, u):

- Partition [u] into intervals $I_{i}=\left[r_{i-1} . . r_{i}-1\right]$ for $0 \leq i \leq k$.
- Let $S_{i} \leftarrow I_{i} \cap S$.
- Compute $\boldsymbol{\Sigma}\left(S_{0}\right)$ using Algorithm 1.
- Compute $\boldsymbol{\Sigma}\left(S_{i}\right)$ using Algorithm 2 for $1 \leq i \leq k$.
- Return $\bigoplus_{i=0}^{R} \boldsymbol{\Sigma}\left(S_{i}\right)$.

Algorithm 3

Algorithm 3

Algorithm $1 \tilde{O}\left(n_{0} r_{0}\right)$

Algorithm 3

$$
S_{i}
$$

Find $\Sigma\left(S_{i}\right)$
Algorithm 2

$$
\tilde{O}\left(\left(\frac{u}{r_{i-1}}\right)^{2}\left(r_{i}-r_{i-1}\right)\right)=\tilde{O}\left(u^{2} / r_{i-1}\right)
$$

Algorithm 3

Find $\Sigma\left(S_{i}\right)$ for all $1 \leq i \leq k$

$$
\sum_{i=1}^{k} \tilde{O}\left(\frac{u^{2}}{r_{i-1}}\right)=\tilde{O}\left(\frac{u^{2}}{r_{0}}\right)
$$

Algorithm 3: Analysis

- Find $\boldsymbol{\Sigma}\left(S_{0}\right)$ in $\tilde{O}\left(n_{0} r_{0}\right)=\tilde{O}\left(\min \left(n, r_{0}\right) r_{0}\right)$ time.

Algorithm 3: Analysis

- Find $\boldsymbol{\Sigma}\left(S_{0}\right)$ in $\tilde{O}\left(n_{0} r_{0}\right)=\tilde{O}\left(\min \left(n, r_{0}\right) r_{0}\right)$ time.
- Find $\boldsymbol{\Sigma}\left(S_{1}\right), \ldots, \boldsymbol{\Sigma}\left(S_{k}\right)$ in $\tilde{O}\left(u^{2} / r_{0}\right)$ time.

Algorithm 3: Analysis

- Find $\boldsymbol{\Sigma}\left(S_{0}\right)$ in $\tilde{O}\left(n_{0} r_{0}\right)=\tilde{O}\left(\min \left(n, r_{0}\right) r_{0}\right)$ time.
- Find $\boldsymbol{\Sigma}\left(S_{1}\right), \ldots, \boldsymbol{\Sigma}\left(S_{k}\right)$ in $\tilde{O}\left(u^{2} / r_{0}\right)$ time.
- Find $\oplus_{i=0}^{k} \Sigma\left(S_{i}\right)$ in $\tilde{O}(k u)=\tilde{O}(u)$ time.

Algorithm 3: Analysis

- Find $\boldsymbol{\Sigma}\left(S_{0}\right)$ in $\tilde{O}\left(n_{0} r_{0}\right)=\tilde{O}\left(\min \left(n, r_{0}\right) r_{0}\right)$ time.
- Find $\boldsymbol{\Sigma}\left(S_{1}\right), \ldots, \boldsymbol{\Sigma}\left(S_{k}\right)$ in $\tilde{O}\left(u^{2} / r_{0}\right)$ time.
- Find $\oplus_{i=0}^{k} \Sigma\left(S_{i}\right)$ in $\tilde{O}(k u)=\tilde{O}(u)$ time.
- Total running time $\tilde{O}\left(u^{2} / r_{0}+\min \left(n, r_{0}\right) r_{0}+u\right)$.

Algorithm 3: Analysis

- Find $\boldsymbol{\Sigma}\left(S_{0}\right)$ in $\tilde{O}\left(n_{0} r_{0}\right)=\tilde{O}\left(\min \left(n, r_{0}\right) r_{0}\right)$ time.
- Find $\boldsymbol{\Sigma}\left(S_{1}\right), \ldots, \boldsymbol{\Sigma}\left(S_{k}\right)$ in $\tilde{O}\left(u^{2} / r_{0}\right)$ time.
- Find $\oplus_{i=0}^{k} \Sigma\left(S_{i}\right)$ in $\tilde{O}(k u)=\tilde{O}(u)$ time.
- Total running time $\tilde{O}\left(u^{2} / r_{0}+\min \left(n, r_{0}\right) r_{0}+u\right)$.
- Set $r_{0}=u / \sqrt{n}$, we get $\tilde{O}(\sqrt{n} u)$.
- Set $r_{0}=u^{2 / 3}$, we get $O\left(u^{4 / 3}\right)$.

Lower bound?

There exist inputs $x_{1}<\ldots<x_{n}$, such that any divide-and-conquer algorithm that computes $\boldsymbol{\Sigma}(S)$ by

- add parenthesis to this expression

$$
\boldsymbol{\Sigma}\left(x_{1}\right) \oplus \ldots \oplus \boldsymbol{\Sigma}\left(x_{n}\right),
$$

- compute all the intermediate output, takes $\Omega\left(\min \left(\sqrt{n} t, t^{4 / 3}\right)\right)$ time.

Subset sums in \mathbb{Z}_{m}

Overview of the result

$\mathbb{Z}_{m}=\{0, \ldots, m-1\}$, the integers modulo m.

Overview of the result

$\mathbb{Z}_{m}=\{0, \ldots, m-1\}$, the integers modulo m.
Theorem
Let $S \subseteq \mathbb{Z}_{m}$ be a set of size $n . \boldsymbol{\Sigma}(S)$ can be found in $\widetilde{O}\left(\min \left(\sqrt{n} m, m^{5 / 4}\right)\right)$ time.

Overview of the result

$\mathbb{Z}_{m}=\{0, \ldots, m-1\}$, the integers modulo m.
Theorem
Let $S \subseteq \mathbb{Z}_{m}$ be a set of size $n . \boldsymbol{\Sigma}(S)$ can be found in $\widetilde{O}\left(\min \left(\sqrt{n} m, m^{5 / 4}\right)\right)$ time.

Not an adaptation of Algorithm 3.

The challenge

- Algorithm 3 throws away sums that fall outside [u].

The challenge

- Algorithm 3 throws away sums that fall outside [u].
- All operations in \mathbb{Z}_{m} stays in \mathbb{Z}_{m}.

Basic number theory definition/facts

$$
\mathbb{Z}_{m}^{*}=\left\{x \mid x \in \mathbb{Z}_{m}, \operatorname{gcd}(x, m)=1\right\} \text {, the set of units of } \mathbb{Z}_{m} \text {. }
$$

Basic number theory definition/facts

$\mathbb{Z}_{m}^{*}=\left\{x \mid x \in \mathbb{Z}_{m}, \operatorname{gcd}(x, m)=1\right\}$, the set of units of \mathbb{Z}_{m}.
Assume ℓ is large enough $\left(\Omega\left(m^{\log \log m}\right)\right)$ in the remainder of the talk.

Basic number theory definition/facts

$$
\mathbb{Z}_{m}^{*}=\left\{x \mid x \in \mathbb{Z}_{m}, \operatorname{gcd}(x, m)=1\right\} \text {, the set of units of } \mathbb{Z}_{m} .
$$

Assume ℓ is large enough $\left(\Omega\left(m^{\log \log m}\right)\right)$ in the remainder of the talk.
The algorithm consists of a black box for solving subset sums when $S \subseteq \mathbb{Z}_{m}^{*}$, and then apply divide and conquer depending on the divisibility of the elements in S.

Subset sums in \mathbb{Z}_{m}

$$
S \subseteq \mathbb{Z}_{m}^{*}
$$

Segments

A segment of length ℓ is a set of the form $x[\ell]=\{0, x, 2 x, \ldots, \ell x\}$. We denote $X[\ell]=\{i x \mid x \in X, i \in[\ell]\}$.

Segments

A segment of length ℓ is a set of the form $x[\ell]=\{0, x, 2 x, \ldots, \ell x\}$. We denote $X[\ell]=\{i x \mid x \in X, i \in[\ell]\}$.
$\boldsymbol{\Sigma}(S)$ can be found quickly if S is covered by a segment.
Theorem
$S \subseteq \mathbb{Z}_{m}$ is a n element subset of $x[\ell]$, then $\boldsymbol{\Sigma}(S)$ can be found in $\tilde{O}(n \ell)$ time.

The algorithm when input is in \mathbb{Z}_{m}^{*}

We partition the input by segments.

- Find X, such that $S \subseteq X[\ell]$.

The algorithm when input is in \mathbb{Z}_{m}^{*}

We partition the input by segments.

- Find X, such that $S \subseteq X[\ell]$.
- Create a partition $\left\{S_{x} \mid x \in X\right\}$ of S, such that $S_{x} \subseteq x[\ell]$.

The algorithm when input is in \mathbb{Z}_{m}^{*}

We partition the input by segments.

- Find X, such that $S \subseteq X[\ell]$.
- Create a partition $\left\{S_{x} \mid x \in X\right\}$ of S, such that $S_{x} \subseteq x[\ell]$.
- return $\bigoplus_{x \in X} \boldsymbol{\Sigma}\left(S_{x}\right)$.

The algorithm when input is in \mathbb{Z}_{m}^{*}

The running time:

The algorithm when input is in \mathbb{Z}_{m}^{*}

The running time:

- The time for finding X, say $T(n, \ell, m)$

The algorithm when input is in \mathbb{Z}_{m}^{*}

The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\boldsymbol{\Sigma}\left(S_{X}\right)$ takes $\tilde{O}\left(\left|S_{X}\right| \ell\right)$.

The algorithm when input is in \mathbb{Z}_{m}^{*}

The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\boldsymbol{\Sigma}\left(S_{x}\right)$ takes $\tilde{O}\left(\left|S_{x}\right| \ell\right)$. The total time over all S_{x} is $\sum_{x \in X} \tilde{O}\left(\left|S_{x}\right| \ell\right)=\tilde{O}(n \ell)$.

The algorithm when input is in \mathbb{Z}_{m}^{*}

The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\boldsymbol{\Sigma}\left(S_{x}\right)$ takes $\tilde{O}\left(\left|S_{x}\right| \ell\right)$. The total time over all S_{x} is $\sum_{x \in X} \tilde{O}\left(\left|S_{x}\right| \ell\right)=\tilde{O}(n \ell)$.
- $\bigoplus_{x \in X} \boldsymbol{\Sigma}\left(S_{X}\right)$ takes $\tilde{O}(|X| m)$ time.

The total running time is $\tilde{O}(T(n, \ell, m)+n \ell+|X| m)$.

The algorithm when input is in \mathbb{Z}_{m}^{*}

The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\boldsymbol{\Sigma}\left(S_{x}\right)$ takes $\tilde{O}\left(\left|S_{x}\right| \ell\right)$. The total time over all S_{x} is $\sum_{x \in X} \tilde{O}\left(\left|S_{x}\right| \ell\right)=\tilde{O}(n \ell)$.
- $\bigoplus_{x \in X} \boldsymbol{\Sigma}\left(S_{X}\right)$ takes $\tilde{O}(|X| m)$ time.

The total running time is $\tilde{O}(T(n, \ell, m)+n \ell+|X| m)$. We need to find a small X that induces a cover of S, and we have to find one fast.

Covering $S \subseteq \mathbb{Z}_{m}^{*}$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_{m}^{*}$, there exists a $x \in \mathbb{Z}_{m}^{*}$, such that $|S \cap x[\ell]|=\Omega\left(\frac{\ell}{m}|S|\right)$.

Covering $S \subseteq \mathbb{Z}_{m}^{*}$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_{m}^{*}$, there exists a $x \in \mathbb{Z}_{m}^{*}$, such that $|S \cap x[\ell]|=\Omega\left(\frac{\ell}{m}|S|\right)$.
$\cdot b \in x[\ell]$ if there exists $a \in[\ell]$ such that $a x \equiv b(\bmod m)$.

Covering $S \subseteq \mathbb{Z}_{m}^{*}$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_{m}^{*}$, there exists a $x \in \mathbb{Z}_{m}^{*}$, such that $|S \cap x[\ell]|=\Omega\left(\frac{\ell}{m}|S|\right)$.

- $b \in x[\ell]$ if there exists $a \in[\ell]$ such that $a x \equiv b(\bmod m)$.
- $a x \equiv b(\bmod m)$ has exactly one solution if $a, b \in \mathbb{Z}_{m}^{*}$.

Covering $S \subseteq \mathbb{Z}_{m}^{*}$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_{m}^{*}$, there exists a $x \in \mathbb{Z}_{m}^{*}$, such that $|S \cap x[\ell]|=\Omega\left(\frac{\ell}{m}|S|\right)$.

- $b \in x[\ell]$ if there exists $a \in[\ell]$ such that $a x \equiv b(\bmod m)$.
- $a x \equiv b(\bmod m)$ has exactly one solution if $a, b \in \mathbb{Z}_{m}^{*}$.
- Each $b \in \mathbb{Z}_{m}^{*}$ is covered by $[\ell] \cap \mathbb{Z}_{m}^{*}$ segments: For each $a \in[\ell] \cap \mathbb{Z}_{m}^{*}$, there is a unique x such that $b \in x[\ell]$.

Covering $S \subseteq \mathbb{Z}_{m}^{*}$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_{m}^{*}$, there exists a $x \in \mathbb{Z}_{m}^{*}$, such that $|S \cap x[\ell]|=\Omega\left(\frac{\ell}{m}|S|\right)$.
$\cdot b \in x[\ell]$ if there exists $a \in[\ell]$ such that $a x \equiv b(\bmod m)$.

- $a x \equiv b(\bmod m)$ has exactly one solution if $a, b \in \mathbb{Z}_{m}^{*}$.
- Each $b \in \mathbb{Z}_{m}^{*}$ is covered by $[\ell] \cap \mathbb{Z}_{m}^{*}$ segments: For each $a \in[\ell] \cap \mathbb{Z}_{m}^{*}$, there is a unique x such that $b \in x[\ell]$.

$$
\underset{\text { uniform }}{\mathbb{E}} \underset{x \in \mathbb{Z}_{m}^{*}}{ }[b \text { covered by } x[\ell]]=\frac{\left|[\ell] \cap \mathbb{Z}_{m}^{*}\right|}{\left|\mathbb{Z}_{m}^{*}\right|}=\Omega\left(\frac{\ell}{m}\right)
$$

Covering $S \subseteq \mathbb{Z}_{m}^{*}$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_{m}^{*}$, there exists a $x \in \mathbb{Z}_{m}^{*}$, such that $|S \cap x[\ell]|=\Omega\left(\frac{\ell}{m}|S|\right)$.

- $b \in x[\ell]$ if there exists $a \in[\ell]$ such that $a x \equiv b(\bmod m)$.
- $a x \equiv b(\bmod m)$ has exactly one solution if $a, b \in \mathbb{Z}_{m}^{*}$.
- Each $b \in \mathbb{Z}_{m}^{*}$ is covered by $[\ell] \cap \mathbb{Z}_{m}^{*}$ segments: For each $a \in[\ell] \cap \mathbb{Z}_{m}^{*}$, there is a unique x such that $b \in x[\ell]$.

$$
\underset{\text { uniform }}{\mathbb{E}} \underset{x \in \mathbb{Z}_{m}^{*}}{ }[b \text { covered by } x[\ell]]=\frac{\left|[\ell] \cap \mathbb{Z}_{m}^{*}\right|}{\left|\mathbb{Z}_{m}^{*}\right|}=\Omega\left(\frac{\ell}{m}\right)
$$

- For any subset $S \subseteq \mathbb{Z}_{m}^{*}$, there is a $x[\ell]$ that covers $|S| \frac{\ell}{m}$ elements in S in expectation.

Cover S with segments

Algorithm

$\operatorname{GreedySETCover}\left(S \subseteq \mathbb{Z}_{m}^{*}\right)$

1. Pick $x[\ell]$ such that $|x[\ell] \cap S|$ is maximized.
2. $S \leftarrow S \backslash x[\ell]$
3. GreedySetCover(S)

Finds a cover of size $O\left(\frac{m}{\ell} \log n\right)$ in $O(n \ell)$ time.

Subset sums in \mathbb{Z}_{m}^{*}

Theorem
All subset sums with input $S \subseteq \mathbb{Z}_{m}^{*}$ can be solved in Õ $(\sqrt{n} m)$ time. Proof.

$$
\tilde{O}\left(T(n, \ell, m)+n \ell+\left(\frac{m}{\ell}\right) m\right)=\tilde{O}\left(\frac{m^{2}}{\ell}+n \ell\right)
$$

Let $\ell=\frac{m}{\sqrt{n}}$.

Subset sums in \mathbb{Z}_{m}^{*}

Theorem
All subset sums with input $S \subseteq \mathbb{Z}_{m}^{*}$ can be solved in õ $(\sqrt{n} m)$ time. Proof.

$$
\tilde{O}\left(T(n, \ell, m)+n \ell+\left(\frac{m}{\ell}\right) m\right)=\tilde{O}\left(\frac{m^{2}}{\ell}+n \ell\right)
$$

Let $\ell=\frac{m}{\sqrt{n}}$.
We can assume $n=O(\sqrt{m})$.

Subset sums in \mathbb{Z}_{m}^{*}

Theorem
All subset sums with input $S \subseteq \mathbb{Z}_{m}^{*}$ can be solved in O$(\sqrt{n} m)$ time.
Proof.

$$
\tilde{O}\left(T(n, \ell, m)+n \ell+\left(\frac{m}{\ell}\right) m\right)=\tilde{O}\left(\frac{m^{2}}{\ell}+n \ell\right)
$$

Let $\ell=\frac{m}{\sqrt{n}}$.
We can assume $n=O(\sqrt{m})$.
Theorem ([Hamidoune, Llad \& Serra 08])
If $S \subseteq \mathbb{Z}_{m}^{*}$ and $|S| \geq 2 \sqrt{m}$, then $\boldsymbol{\Sigma}(S)=\mathbb{Z}_{m}$.

Subset sums in \mathbb{Z}_{m}^{*}

Theorem
All subset sums with input $S \subseteq \mathbb{Z}_{m}^{*}$ can be solved in O$(\sqrt{n} m)$ time.
Proof.

$$
\tilde{O}\left(T(n, \ell, m)+n \ell+\left(\frac{m}{\ell}\right) m\right)=\tilde{O}\left(\frac{m^{2}}{\ell}+n \ell\right)
$$

Let $\ell=\frac{m}{\sqrt{n}}$.
We can assume $n=O(\sqrt{m})$.
Theorem ([Hamidoune, Llad \& Serra 08])
If $S \subseteq \mathbb{Z}_{m}^{*}$ and $|S| \geq 2 \sqrt{m}$, then $\boldsymbol{\Sigma}(S)=\mathbb{Z}_{m}$.
Theorem
All subset sums in \mathbb{Z}_{m}^{*} can be solved in $\tilde{O}\left(\min \left(\sqrt{n} m, m^{5 / 4}\right)\right)$ time.

Subset sums in \mathbb{Z}_{m}

$$
S \subseteq \mathbb{Z}_{m}
$$

Definitions

- $\mathbb{Z}_{m, d}=\left\{x: x \in \mathbb{Z}_{m}\right.$ and $\left.\operatorname{gcd}(x, m) \mid d\right\}$.

Definitions

- $\mathbb{Z}_{m, d}=\left\{x: x \in \mathbb{Z}_{m}\right.$ and $\left.\operatorname{gcd}(x, m) \mid d\right\}$.
- $\mathbb{Z}_{m}^{*}=\mathbb{Z}_{m, 1}$.

Definitions

- $\mathbb{Z}_{m, d}=\left\{x: x \in \mathbb{Z}_{m}\right.$ and $\left.\operatorname{gcd}(x, m) \mid d\right\}$.
- $\mathbb{Z}_{m}^{*}=\mathbb{Z}_{m, 1}$.
- $\mathbb{Z}_{m}=\mathbb{Z}_{m, m}$.

Definitions

- $\mathbb{Z}_{m, d}=\left\{x: x \in \mathbb{Z}_{m}\right.$ and $\left.\operatorname{gcd}(x, m) \mid d\right\}$.
- $\mathbb{Z}_{m}^{*}=\mathbb{Z}_{m, 1}$.
- $\mathbb{Z}_{m}=\mathbb{Z}_{m, m}$.

We define AllSubsetSums(S, m, d) as an algorithm that finds all subset sums of S in \mathbb{Z}_{m}, if $S \subseteq \mathbb{Z}_{m, d}$

Definitions

- $\mathbb{Z}_{m, d}=\left\{x: x \in \mathbb{Z}_{m}\right.$ and $\left.\operatorname{gcd}(x, m) \mid d\right\}$.
- $\mathbb{Z}_{m}^{*}=\mathbb{Z}_{m, 1}$.
- $\mathbb{Z}_{m}=\mathbb{Z}_{m, m}$.

We define AllSubsetSums(S, m, d) as an algorithm that finds all subset sums of S in \mathbb{Z}_{m}, if $S \subseteq \mathbb{Z}_{m, d}$

We solved the case for AllSubsetSums(S, m, 1).

$$
\Sigma(S)=\operatorname{ALLSUBSETSUMS}(S, m, m)
$$

The algorithm for all subset sums in \mathbb{Z}_{m}

- $S / p=\{s / p: s \in S, p \mid s\}$
- $S \% p=\{s: s \in S, p \nmid s\}$

The algorithm for all subset sums in \mathbb{Z}_{m}

- $S / p=\{s / p: s \in S, p \mid s\}$
- $S \% p=\{s: s \in S, p \nmid s\}$

Algorithm

AllSubsetSums(S, m, d):

1. $d=1$, use the previous algorithm.
2. $p \leftarrow$ the largest prime factor of d
3. [All elements in S divisible by p]
$A \leftarrow \operatorname{AlLSUBSETSums}(S / p, m / p, d / p)$
4. [All elements in S not divisible by p]
$B \leftarrow \operatorname{AlLSUBSETSUMS}(S \% p, m, d / p)$
5. return $(p \cdot A) \oplus B$

Example recursion tree where $S=\mathbb{Z}_{6}$

	$S=\mathbb{Z}_{6}$			
0				
0	1	2	3	4

Example recursion tree where $S=\mathbb{Z}_{6}$

\[

\]

$$
p=3, d=6
$$

Example recursion tree where $S=\mathbb{Z}_{6}$

$$
p=3, d=6 \quad
$$

Example recursion tree where $S=\mathbb{Z}_{6}$

Run time analysis: Leaves

Compute $\boldsymbol{\Sigma}\left(S_{i}\right)$ for each $i .\left|S_{i}\right|=n_{i} . d_{i} \leq m / i$ is the i th largest divisor of m.

$$
\begin{aligned}
& \tilde{O}\left(\sum_{i} \min \left(\sqrt{n_{i}} d_{i}, d_{i}^{5 / 4}\right)\right) \\
= & \tilde{O}\left(\sum_{i} \min \left(\sqrt{n_{i}} m / i,(m / i)^{5 / 4}\right)\right) \\
= & \tilde{O}\left(\min \left(\sqrt{n} m, m^{5 / 4}\right)\right)
\end{aligned}
$$

Run time analysis: Internal nodes

- There are $O(\log m)$ levels.
- Each level, the time spent on \oplus is $\tilde{O}\left(\sum_{d \mid m} d\right)=\tilde{O}\left(\sigma_{1}(m)\right)=\tilde{O}(m)$.
- The total running time over internal nodes are $\tilde{O}(m)$.

Run time analysis

Theorem

All subset sums in \mathbb{Z}_{m} can be solved in $\tilde{O}\left(\min \left(\sqrt{n} m, m^{5 / 4}\right)\right)$.

Open Problems

Open Problems: Deterministic near linear time algorithm

Is there a deterministic $\widetilde{O}(t)$ time algorithm for the subset sum problem matching its conditional lower bound?

Open Problems: Output sensitive subset sum

Let $k=|\boldsymbol{\Sigma}(S) \cap[t]|$. Assume $k \ll t$.

- Known: subset sum in $O(n k)$ time use Bellman's DP algorithm.
- Can we obtain an algorithm with $\widetilde{O}(\sqrt{n} k)$ running time?

Open Problems: Covering \mathbb{Z}_{m} by segments of length ℓ

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_{m}.

Open Problems: Covering \mathbb{Z}_{m} by segments of length ℓ

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_{m}.

Lower Bound: $f(m, \ell) \geq\left\lceil\frac{m}{\ell}\right\rceil$

Open Problems: Covering \mathbb{Z}_{m} by segments of length ℓ

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_{m}.

Lower Bound: $f(m, \ell) \geq\left\lceil\frac{m}{\ell}\right\rceil$
Upper Bound:
Theorem ([Chen, Shparlinski \& Winterhof '13])

- $f(m, \ell)=O\left(\frac{m}{\ell}\right)$ if m is prime.
- $f(m, \ell)=\frac{m^{1+o(1)}}{\sqrt{\ell}}$.

Open Problems: Covering \mathbb{Z}_{m} by segments of length ℓ

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_{m}.

Lower Bound: $f(m, \ell) \geq\left\lceil\frac{m}{\ell}\right\rceil$
Upper Bound:
Theorem ([Chen, Shparlinski \& Winterhof '13])

- $f(m, \ell)=O\left(\frac{m}{\ell}\right)$ if m is prime.
- $f(m, \ell)=\frac{m^{1+o(1)}}{\sqrt{\ell}}$.

Theorem ([Koiliaris \& Xu '17])
$f(m, \ell)=\sigma_{0}(m)+O\left(\sigma_{1}(m) \log m / \ell\right)=\frac{m^{1+(1)}}{\ell}$

Open Problems: Covering \mathbb{Z}_{m} by segments of length ℓ

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_{m}.

Lower Bound: $f(m, \ell) \geq\left\lceil\frac{m}{\ell}\right\rceil$
Upper Bound:
Theorem ([Chen, Shparlinski \& Winterhof '13])

- $f(m, \ell)=O\left(\frac{m}{\ell}\right)$ if m is prime.
- $f(m, \ell)=\frac{m^{1+o(1)}}{\sqrt{\ell}}$.

Theorem ([Koiliaris \& Xu '17])
$f(m, \ell)=\sigma_{0}(m)+O\left(\sigma_{1}(m) \log m / \ell\right)=\frac{m^{1+(1)}}{\ell}$
Conjecture: $f(m, \ell)=O\left(\frac{m}{\ell}\right)$

Thank you

