
A Faster Pseudopolynomial Time Algorithm for
Subset Sum

Konstantinos Koiliaris, Chao 9u
June ͳ, ͯͭͮʹ

University of Illinois, Urbana-Champaign

The Subset Sum Problem

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn and a target
number t.

Output: Is there a subset T of S such that xi T xi t?

ͮ

The Subset Sum Problem

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn and a target
number t.

Output: Is there a subset T of S such that
∑

xi∈T xi = t?

ͮ

The Subset Sum Problem

Classic problem.

One of Karp’s original NP-hard problems.
[Karp ’ʹͯ]

4eakly NP-complete

Textbook DP algorithm due to Bellman that runs in O nt
pseudopolynomial time.

[Bellman ’Ͳͳ]

ͯ

The Subset Sum Problem

Classic problem.

One of Karp’s original NP-hard problems.
[Karp ’ʹͯ]

4eakly NP-complete

Textbook DP algorithm due to Bellman that runs in O nt
pseudopolynomial time.

[Bellman ’Ͳͳ]

ͯ

The Subset Sum Problem

Classic problem.

One of Karp’s original NP-hard problems.
[Karp ’ʹͯ]

4eakly NP-complete

Textbook DP algorithm due to Bellman that runs in O nt
pseudopolynomial time.

[Bellman ’Ͳͳ]

ͯ

The Subset Sum Problem

Classic problem.

One of Karp’s original NP-hard problems.
[Karp ’ʹͯ]

4eakly NP-complete

Textbook DP algorithm due to Bellman that runs in O(nt)
pseudopolynomial time.

[Bellman ’Ͳͳ]

ͯ

4hy pseudopolynomial time algorithm?

Faster pseudopolynomial time algorithm for subset sum implies
faster polynomial time algorithms for various problems.

Ͱ

Applications

As a subroutine:

• knapsack
• scheduling
• graph problems with cardinality constraints

In practice:

• power indices (3oting Theory)
• set-based queries (Database)
• Subset sum based keys (Security)

ͱ

Previous 4ork: Deterministic pseudopolynomial algorithms

• Original DP solution: O(nt) — [Bellman ’Ͳͳ]

• Fast for small max S: O nmax S — [Pisinger ’Ͷͮ]

• Fast for small : O Ͱ ͯ — [Klinz et al. ’ͶͶ]

• Data structure: O nmax S — [Eppstein ’Ͷ ,ʹ Serang ’ͮ ͱ, ’ͮ Ͳ]

• RAM Model implementation of Bellman: O nt log t — [Pisinger
’ͭͰ]

• First poly space algorithm: O nͰt — [Lokshtanov et al. ’ͮ ͭ]

Ͳ

Previous 4ork: Deterministic pseudopolynomial algorithms

• Original DP solution: O(nt) — [Bellman ’Ͳͳ]

• Fast for small max S: O(nmax S) — [Pisinger ’Ͷͮ]

• Fast for small : O Ͱ ͯ — [Klinz et al. ’ͶͶ]

• Data structure: O nmax S — [Eppstein ’Ͷ ,ʹ Serang ’ͮ ͱ, ’ͮ Ͳ]

• RAM Model implementation of Bellman: O nt log t — [Pisinger
’ͭͰ]

• First poly space algorithm: O nͰt — [Lokshtanov et al. ’ͮ ͭ]

Ͳ

Previous 4ork: Deterministic pseudopolynomial algorithms

• Original DP solution: O(nt) — [Bellman ’Ͳͳ]

• Fast for small max S: O(nmax S) — [Pisinger ’Ͷͮ]

• Fast for small σ: O(σͰ/ͯ) — [Klinz et al. ’ͶͶ]

• Data structure: O nmax S — [Eppstein ’Ͷ ,ʹ Serang ’ͮ ͱ, ’ͮ Ͳ]

• RAM Model implementation of Bellman: O nt log t — [Pisinger
’ͭͰ]

• First poly space algorithm: O nͰt — [Lokshtanov et al. ’ͮ ͭ]

Ͳ

Previous 4ork: Deterministic pseudopolynomial algorithms

• Original DP solution: O(nt) — [Bellman ’Ͳͳ]

• Fast for small max S: O(nmax S) — [Pisinger ’Ͷͮ]

• Fast for small σ: O(σͰ/ͯ) — [Klinz et al. ’ͶͶ]

• Data structure: Õ(nmax S) — [Eppstein ’Ͷ ,ʹ Serang ’ͮ ͱ, ’ͮ Ͳ]

• RAM Model implementation of Bellman: O nt log t — [Pisinger
’ͭͰ]

• First poly space algorithm: O nͰt — [Lokshtanov et al. ’ͮ ͭ]

Ͳ

Previous 4ork: Deterministic pseudopolynomial algorithms

• Original DP solution: O(nt) — [Bellman ’Ͳͳ]

• Fast for small max S: O(nmax S) — [Pisinger ’Ͷͮ]

• Fast for small σ: O(σͰ/ͯ) — [Klinz et al. ’ͶͶ]

• Data structure: Õ(nmax S) — [Eppstein ’Ͷ ,ʹ Serang ’ͮ ͱ, ’ͮ Ͳ]

• RAM Model implementation of Bellman: O(nt/ log t) — [Pisinger
’ͭͰ]

• First poly space algorithm: O nͰt — [Lokshtanov et al. ’ͮ ͭ]

Ͳ

Previous 4ork: Deterministic pseudopolynomial algorithms

• Original DP solution: O(nt) — [Bellman ’Ͳͳ]

• Fast for small max S: O(nmax S) — [Pisinger ’Ͷͮ]

• Fast for small σ: O(σͰ/ͯ) — [Klinz et al. ’ͶͶ]

• Data structure: Õ(nmax S) — [Eppstein ’Ͷ ,ʹ Serang ’ͮ ͱ, ’ͮ Ͳ]

• RAM Model implementation of Bellman: O(nt/ log t) — [Pisinger
’ͭͰ]

• First poly space algorithm: Õ(nͰt) — [Lokshtanov et al. ’ͮ ͭ]

Ͳ

Our Contribution

Main Theorem [Koiliaris & 9u ‘ͮʹ]. The subset sum problem can be
decided in Õ

(
min

{√
nt, t ͱ/Ͱ

})
time.

Fastest deterministic pseudopolynomial time algorithm for the
problem.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in O t , with
one-sided error probability ͮ n.

[Bringmann ’ͮ ʹ]

Conditional lower bound: Subset sum solvable in O poly n tͮ for
any ͭ implies faster algorithms for a wide variety of problems
including set cover. [Bringmann ’ͮ ʹ]

ͳ

Our Contribution

Main Theorem [Koiliaris & 9u ‘ͮʹ]. The subset sum problem can be
decided in Õ

(
min

{√
nt, t ͱ/Ͱ

})
time.

Fastest deterministic pseudopolynomial time algorithm for the
problem.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in O t , with
one-sided error probability ͮ n.

[Bringmann ’ͮ ʹ]

Conditional lower bound: Subset sum solvable in O poly n tͮ for
any ͭ implies faster algorithms for a wide variety of problems
including set cover. [Bringmann ’ͮ ʹ]

ͳ

Our Contribution

Main Theorem [Koiliaris & 9u ‘ͮʹ]. The subset sum problem can be
decided in Õ

(
min

{√
nt, t ͱ/Ͱ

})
time.

Fastest deterministic pseudopolynomial time algorithm for the
problem.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in Õ(t), with
one-sided error probability ͮ/n.

[Bringmann ’ͮ ʹ]

Conditional lower bound: Subset sum solvable in O poly n tͮ for
any ͭ implies faster algorithms for a wide variety of problems
including set cover. [Bringmann ’ͮ ʹ]

ͳ

Our Contribution

Main Theorem [Koiliaris & 9u ‘ͮʹ]. The subset sum problem can be
decided in Õ

(
min

{√
nt, t ͱ/Ͱ

})
time.

Fastest deterministic pseudopolynomial time algorithm for the
problem.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in Õ(t), with
one-sided error probability ͮ/n.

[Bringmann ’ͮ ʹ]

Conditional lower bound: Subset sum solvable in O(poly(n)tͮ−ϵ) for
any ϵ > ͭ implies faster algorithms for a wide variety of problems
including set cover. [Bringmann ’ͮ ʹ]

ͳ

3ariants: Addition in Zm

Input: A set S ⊆ Zm of n numbers a target t ∈ Zm.

Output: Is there a subset T of S such that
∑

x∈T x = t?

Solvable in O nm time using Bellman’s DP.

Theorem ([Koiliaris & 9u ‘ͮʹ])
The subset sum problem in m can be decided in
O min nm m Ͳ ͱ time.

Different from the algorithm in !

ʹ

3ariants: Addition in Zm

Input: A set S ⊆ Zm of n numbers a target t ∈ Zm.

Output: Is there a subset T of S such that
∑

x∈T x = t?

Solvable in O(nm) time using Bellman’s DP.

Theorem ([Koiliaris & 9u ‘ͮʹ])
The subset sum problem in m can be decided in
O min nm m Ͳ ͱ time.

Different from the algorithm in !

ʹ

3ariants: Addition in Zm

Input: A set S ⊆ Zm of n numbers a target t ∈ Zm.

Output: Is there a subset T of S such that
∑

x∈T x = t?

Solvable in O(nm) time using Bellman’s DP.

Theorem ([Koiliaris & 9u ‘ͮʹ])
The subset sum problem in Zm can be decided in
Õ
(
min

{√
nm,m Ͳ/ͱ}) time.

Different from the algorithm in !

ʹ

3ariants: Addition in Zm

Input: A set S ⊆ Zm of n numbers a target t ∈ Zm.

Output: Is there a subset T of S such that
∑

x∈T x = t?

Solvable in O(nm) time using Bellman’s DP.

Theorem ([Koiliaris & 9u ‘ͮʹ])
The subset sum problem in Zm can be decided in
Õ
(
min

{√
nm,m Ͳ/ͱ}) time.

Different from the algorithm in N!

ʹ

3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O nt time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi , then it’s the coin change problem.
• O nxͮ time [Böcker and Lipták ‘ͭʹ]
• O t time. [Bringmann ’ͮ ʹ]

͵

3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]

• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi , then it’s the coin change problem.
• O nxͮ time [Böcker and Lipták ‘ͭʹ]
• O t time. [Bringmann ’ͮ ʹ]

͵

3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi , then it’s the coin change problem.
• O nxͮ time [Böcker and Lipták ‘ͭʹ]
• O t time. [Bringmann ’ͮ ʹ]

͵

3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi =∞, then it’s the coin change problem.

• O nxͮ time [Böcker and Lipták ‘ͭʹ]
• O t time. [Bringmann ’ͮ ʹ]

͵

3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi =∞, then it’s the coin change problem.
• O(nxͮ) time [Böcker and Lipták ‘ͭʹ]

• O t time. [Bringmann ’ͮ ʹ]

͵

3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi =∞, then it’s the coin change problem.
• O(nxͮ) time [Böcker and Lipták ‘ͭʹ]
• Õ(t) time. [Bringmann ’ͮ ʹ]

͵

3ariants: Subset sums with cardinality constraint

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn, cardinality
constraint k and target number t.

Output: Does there exists a subset of S of size k that sums to t?

• Solvable in O(knt) time by modifying Bellman’s DP.

• 4e can solve it in O nt time.

Ͷ

3ariants: Subset sums with cardinality constraint

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn, cardinality
constraint k and target number t.

Output: Does there exists a subset of S of size k that sums to t?

• Solvable in O(knt) time by modifying Bellman’s DP.
• 4e can solve it in Õ(nt) time.

Ͷ

3ariants: Return a solution

• Instead of the decision problem, what if we want the actual set
that realizes the target?

• Our algorithm handles it with polylog factor slow down.
• 4e can also count the number of solutions faster than the
standard dynamic programming algorithm.

ͮͭ

3ariants: Return a solution

• Instead of the decision problem, what if we want the actual set
that realizes the target?

• Our algorithm handles it with polylog factor slow down.

• 4e can also count the number of solutions faster than the
standard dynamic programming algorithm.

ͮͭ

3ariants: Return a solution

• Instead of the decision problem, what if we want the actual set
that realizes the target?

• Our algorithm handles it with polylog factor slow down.
• 4e can also count the number of solutions faster than the
standard dynamic programming algorithm.

ͮͭ

Outline of the talk

4e present two algorithms:

• Solve subset sum in N.
• Solve subset sum in Zm.

ͮͮ

Subset sums in N

All Subset Sums

To solve the subset sum problem, we will consider the following all
subset sums problem:

Given a set S of n natural numbers and an (upper bound) u, compute
all the realizable sums up to u.

ͮͯ

All Subset Sums

To solve the subset sum problem, we will consider the following all
subset sums problem:

Given a set S of n natural numbers and an (upper bound) u, compute
all the realizable sums up to u.

ͮͯ

Notations

• [x..y] = {x, x+ ͮ, . . . , y} is the set of integers in the interval [x, y].

• u ͭ u .
• For two sets X and Y, X Y x y x X and y Y .
• The set of all subset sums of S is denoted by

S
t T

t T S

Finding all subset sums of S up to u: compute S u .

ͮͰ

Notations

• [x..y] = {x, x+ ͮ, . . . , y} is the set of integers in the interval [x, y].
• [u] = [ͭ..u].

• For two sets X and Y, X Y x y x X and y Y .
• The set of all subset sums of S is denoted by

S
t T

t T S

Finding all subset sums of S up to u: compute S u .

ͮͰ

Notations

• [x..y] = {x, x+ ͮ, . . . , y} is the set of integers in the interval [x, y].
• [u] = [ͭ..u].
• For two sets X and Y, X⊕ Y = {x+ y | x ∈ X and y ∈ Y}.

• The set of all subset sums of S is denoted by

S
t T

t T S

Finding all subset sums of S up to u: compute S u .

ͮͰ

Notations

• [x..y] = {x, x+ ͮ, . . . , y} is the set of integers in the interval [x, y].
• [u] = [ͭ..u].
• For two sets X and Y, X⊕ Y = {x+ y | x ∈ X and y ∈ Y}.
• The set of all subset sums of S is denoted by

Σ(S) =
{
∑

t∈T
t
∣∣∣∣∣ T ⊆ S

}
.

Finding all subset sums of S up to u: compute S u .

ͮͰ

Notations

• [x..y] = {x, x+ ͮ, . . . , y} is the set of integers in the interval [x, y].
• [u] = [ͭ..u].
• For two sets X and Y, X⊕ Y = {x+ y | x ∈ X and y ∈ Y}.
• The set of all subset sums of S is denoted by

Σ(S) =
{
∑

t∈T
t
∣∣∣∣∣ T ⊆ S

}
.

Finding all subset sums of S up to u: compute Σ(S) ∩ [u].

ͮͰ

Divide and conquer

Fact. If P and Q form a partition of a set S, then Σ(P)⊕Σ(Q) = Σ(S).

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

• Partition the set S into two sets
• Recursively compute their subset sums
• Combine them together with .

ͮͱ

Divide and conquer

Fact. If P and Q form a partition of a set S, then Σ(P)⊕Σ(Q) = Σ(S).

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

• Partition the set S into two sets

• Recursively compute their subset sums
• Combine them together with .

ͮͱ

Divide and conquer

Fact. If P and Q form a partition of a set S, then Σ(P)⊕Σ(Q) = Σ(S).

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

• Partition the set S into two sets
• Recursively compute their subset sums

• Combine them together with .

ͮͱ

Divide and conquer

Fact. If P and Q form a partition of a set S, then Σ(P)⊕Σ(Q) = Σ(S).

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

• Partition the set S into two sets
• Recursively compute their subset sums
• Combine them together with ⊕.

ͮͱ

Review of the Bellman’s dynamic programming algorithm

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn and an upper
bound u.

Algorithm:

• Tͭ ← {ͭ}.
• Ti ← Ti−ͮ ∪ {s+ xi|s ∈ Ti−ͮ, s+ xi ≤ u}.

O(nu) time.

ͮͲ

Alternative view

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn and an upper
bound u.

Algorithm:

• return [u] ∩⊕n
i=ͮΣ({xi}).

Σ({x}) = {ͭ, x}.

ͮͳ

Convolution algorithm

Theorem. Given A,B ⊆ [u], A⊕ B can be computed in
O(u logu) = Õ(u) time.

Just use FFT

Theorem. Given A B u v , A B can be computed in
O uv loguv O uv time.

ͮʹ

Convolution algorithm

Theorem. Given A,B ⊆ [u], A⊕ B can be computed in
O(u logu) = Õ(u) time.

Just use FFT

Theorem. Given A,B ⊆ [u]× [v], A⊕ B can be computed in
O(uv loguv) = Õ(uv) time.

ͮʹ

Two algorithms for all subset sums

If S ⊆ [x..x+ ℓ], then we will show that Σ(S) ∩ [u] can be found in

• O(n(x+ ℓ)) time. (Algorithm ͮ)
• O((u/x)ͯℓ) time. (Algorithm ͯ)

4e balance the running time of both algorithms to get the desired
result.

ͮ͵

Two algorithms for all subset sums

If S ⊆ [x..x+ ℓ], then we will show that Σ(S) ∩ [u] can be found in

• O(n(x+ ℓ)) time. (Algorithm ͮ)
• O((u/x)ͯℓ) time. (Algorithm ͯ)

4e balance the running time of both algorithms to get the desired
result.

ͮ͵

Algorithm ͮ

ͮ͵

Algorithm ͮ: Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L and R .

• The sets L R n x . L R in O n x time.
•

T n ͯT n ͯ O n x

• Solves to T n O n x

ͮͶ

Algorithm ͮ: Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L and R .

• The sets L R n x . L R in O n x time.
•

T n ͯT n ͯ O n x

• Solves to T n O n x

ͮͶ

Algorithm ͮ: Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively Σ(L) and Σ(R).

• The sets L R n x . L R in O n x time.
•

T n ͯT n ͯ O n x

• Solves to T n O n x

ͮͶ

Algorithm ͮ: Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively Σ(L) and Σ(R).

• The sets Σ(L),Σ(R) ⊆ [n(x+ ℓ)]. Σ(L)⊕Σ(R) in Õ(n(x+ ℓ)) time.

•
T n ͯT n ͯ O n x

• Solves to T n O n x

ͮͶ

Algorithm ͮ: Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively Σ(L) and Σ(R).

• The sets Σ(L),Σ(R) ⊆ [n(x+ ℓ)]. Σ(L)⊕Σ(R) in Õ(n(x+ ℓ)) time.
•

T(n) = ͯT(n/ͯ) + Õ(n(x+ ℓ))

• Solves to T n O n x

ͮͶ

Algorithm ͮ: Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively Σ(L) and Σ(R).

• The sets Σ(L),Σ(R) ⊆ [n(x+ ℓ)]. Σ(L)⊕Σ(R) in Õ(n(x+ ℓ)) time.
•

T(n) = ͯT(n/ͯ) + Õ(n(x+ ℓ))

• Solves to T(n) = Õ(n(x+ ℓ))

ͮͶ

Algorithm ͯ

ͮͶ

Algorithm ͯ: Idea

Lemma. Given a set S ⊆ [x..x+ ℓ] of size n, computing the set
Σ(S) ∩ [u] takes Õ

(
(u/x)ͯℓ

)
time.

Main idea If elements in S are larger than u, we can throw it away.
Sum of any u

x ͮ elements is greater than u, then we only need
subset sums using size u

x subsets.

Proof Sketch. Same algorithm:

ͮ. Partition S into L and R
ͯ. Compute L u and R u recursively
Ͱ. Combine through (a smarter implementation of) .

ͯͭ

Algorithm ͯ: Idea

Lemma. Given a set S ⊆ [x..x+ ℓ] of size n, computing the set
Σ(S) ∩ [u] takes Õ

(
(u/x)ͯℓ

)
time.

Main idea If elements in Σ(S) are larger than u, we can throw it away.

Sum of any u
x ͮ elements is greater than u, then we only need

subset sums using size u
x subsets.

Proof Sketch. Same algorithm:

ͮ. Partition S into L and R
ͯ. Compute L u and R u recursively
Ͱ. Combine through (a smarter implementation of) .

ͯͭ

Algorithm ͯ: Idea

Lemma. Given a set S ⊆ [x..x+ ℓ] of size n, computing the set
Σ(S) ∩ [u] takes Õ

(
(u/x)ͯℓ

)
time.

Main idea If elements in Σ(S) are larger than u, we can throw it away.
Sum of any

⌊u
x
⌋
+ ͮ elements is greater than u, then we only need

subset sums using size
⌊u
x
⌋
subsets.

Proof Sketch. Same algorithm:

ͮ. Partition S into L and R
ͯ. Compute L u and R u recursively
Ͱ. Combine through (a smarter implementation of) .

ͯͭ

Algorithm ͯ: Idea

Lemma. Given a set S ⊆ [x..x+ ℓ] of size n, computing the set
Σ(S) ∩ [u] takes Õ

(
(u/x)ͯℓ

)
time.

Main idea If elements in Σ(S) are larger than u, we can throw it away.
Sum of any

⌊u
x
⌋
+ ͮ elements is greater than u, then we only need

subset sums using size
⌊u
x
⌋
subsets.

Proof Sketch. Same algorithm:

ͮ. Partition S into L and R
ͯ. Compute Σ(L) ∩ [u] and Σ(R) ∩ [u] recursively
Ͱ. Combine through (a smarter implementation of) ⊕.

ͯͭ

Algorithm ͯ: A single recursive step

SS
xx x+ `x+ `

ͯͮ

Algorithm ͯ: A single recursive step

SS

δδ

LL RR

xx x+ `x+ `

ͯͯ

Algorithm ͯ: A single recursive step

SS

δδ

LL RR

xx x+ `x+ `

(Σ(L) ∩ [u])⊕ (Σ(R) ∩ [u])(Σ(L) ∩ [u])⊕ (Σ(R) ∩ [u])

ͯͰ

Algorithm ͯ: A single recursive step

• z ∈ Σ(L) ∩ [u].

• For some L L, z s L s x t L x t, t .
• L u x k.
• z ix j, where i k j k .

ͯͱ

Algorithm ͯ: A single recursive step

• z ∈ Σ(L) ∩ [u].
• For some L′ ⊆ L, z = ∑

s∈L′ s =
∑

x+t∈L′ x+ t, t ∈ [ℓ].

• L u x k.
• z ix j, where i k j k .

ͯͱ

Algorithm ͯ: A single recursive step

• z ∈ Σ(L) ∩ [u].
• For some L′ ⊆ L, z = ∑

s∈L′ s =
∑

x+t∈L′ x+ t, t ∈ [ℓ].
• |L′| ≤ ⌊u/x⌋ = k.

• z ix j, where i k j k .

ͯͱ

Algorithm ͯ: A single recursive step

• z ∈ Σ(L) ∩ [u].
• For some L′ ⊆ L, z = ∑

s∈L′ s =
∑

x+t∈L′ x+ t, t ∈ [ℓ].
• |L′| ≤ ⌊u/x⌋ = k.
• z = ix+ j, where i ∈ [k], j ∈ [ℓk].

ͯͱ

Algorithm ͯ: A single recursive step

∈∈

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

k =

j

u

x

k

k =

j

u

x

k

z = ix+ jz = ix+ j

ͯͲ

Algorithm ͯ: A single recursive step

∈∈

ΦΦ (i, j)(i, j)

Lift to 2D

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

k =

j

u

x

k

k =

j

u

x

k

z = ix+ jz = ix+ j

ͯͳ

Algorithm ͯ: A single recursive step

∈∈

ΦΦ (i, j)(i, j)

Lift to 2D

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

A = Φ(Σ(L) ∩ [u])

B = Φ(Σ(R) ∩ [u])

A = Φ(Σ(L) ∩ [u])

B = Φ(Σ(R) ∩ [u])

A,B ⊆ [k]× [`k]A,B ⊆ [k]× [`k]

ΦΦ

k =

j

u

x

k

k =

j

u

x

k

z = ix+ jz = ix+ j

ͯʹ

Algorithm ͯ: A single recursive step

∈∈

ΦΦ (i, j)(i, j)

Lift to 2D

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

A = Φ(Σ(L) ∩ [u])

B = Φ(Σ(R) ∩ [u])

A = Φ(Σ(L) ∩ [u])

B = Φ(Σ(R) ∩ [u])

A,B ⊆ [k]× [`k]A,B ⊆ [k]× [`k]

A⊕BA⊕BΦ
−1

Φ
−1Σ(L)⊕ Σ(R)Σ(L)⊕ Σ(R)

∩[u]∩[u]
Õ(`k2)Õ(`k2) time

ΦΦ

=

k =

j

u

x

k

k =

j

u

x

k

Õ((u/x)2`)Õ((u/x)2`)

z = ix+ jz = ix+ j

ͯ͵

Algorithm ͯ: Run time analysis

Let T(n, ℓ) be the running time of Algorithm ͯ with input set
S ⊆ [x..x+ ℓ] of size n.

ͮ ͯ .

T n T n ͯ ͮ T n ͯ ͯ O u x ͯ

O u x ͯ

ͯͶ

Algorithm ͯ: Run time analysis

Let T(n, ℓ) be the running time of Algorithm ͯ with input set
S ⊆ [x..x+ ℓ] of size n.

ℓͮ + ℓͯ = ℓ.

T(n, ℓ) = T(n/ͯ, ℓͮ) + T(n/ͯ, ℓͯ) + Õ(ℓ(u/x)ͯ)
= Õ(ℓ(u/x)ͯ)

ͯͶ

Algorithm Ͱ

ͯͶ

Algorithm Ͱ

Algorithm
AllSubsetSumͰ(S,u):

• Partition [u] into intervals Ii = [ri−ͮ..ri − ͮ] for ͭ ≤ i ≤ k.
• Let Si ← Ii ∩ S.
• Compute Σ(Sͭ) using Algorithm ͮ.
• Compute Σ(Si) using Algorithm ͯ for ͮ ≤ i ≤ k.
• Return

⊕k
i=ͭΣ(Si).

Ͱͭ

Algorithm Ͱ

00 uu

.

r0r0 r1r1 r2r2 rk−1rk−1 rk =rk =

ri = b2ir0cri = b2ir0c Si = S ∩ [ri−1..ri − 1]Si = S ∩ [ri−1..ri − 1]

k = O(log u)k = O(log u) ni = |Si|ni = |Si|

Ͱͮ

Algorithm Ͱ

00 uu

.

r0r0 r1r1 r2r2 rk−1rk−1 rk =rk =

S0S0 Σ(S0)Σ(S0)

Algorithm 1

Find

Õ(n0r0)Õ(n0r0)

r0r000

Ͱͯ

Algorithm Ͱ

00 uu

.

r0r0 rk−1rk−1 rk =rk =

Algorithm 2

Find

.

ririri−1ri−1

Σ(Si)Σ(Si)

Õ((
u

ri−1

)2(ri − ri−1)) = Õ(u2/ri−1)Õ((
u

ri−1

)2(ri − ri−1)) = Õ(u2/ri−1)

SiSi

ͰͰ

Algorithm Ͱ

00 uu

.

r0r0 rk−1rk−1 rk =rk =

Find

.

Σ(Si)Σ(Si) for all 1 ≤ i ≤ k1 ≤ i ≤ k

kX

i=1

Õ(
u2

ri−1

) = Õ(
u2

r0
)

kX

i=1

Õ(
u2

ri−1

) = Õ(
u2

r0
)

Ͱͱ

Algorithm Ͱ: Analysis

• Find Σ(Sͭ) in Õ(nͭrͭ) = Õ(min(n, rͭ)rͭ) time.

• Find Sͮ Sk in O uͯ rͭ time.
• Find k

i ͭ Si in O ku O u time.
• Total running time O uͯ rͭ min n rͭ rͭ u .

• Set rͭ u n, we get O nu .
• Set rͭ uͯ Ͱ, we get O uͱ Ͱ .

ͰͲ

Algorithm Ͱ: Analysis

• Find Σ(Sͭ) in Õ(nͭrͭ) = Õ(min(n, rͭ)rͭ) time.
• Find Σ(Sͮ), . . . ,Σ(Sk) in Õ(uͯ/rͭ) time.

• Find k
i ͭ Si in O ku O u time.

• Total running time O uͯ rͭ min n rͭ rͭ u .

• Set rͭ u n, we get O nu .
• Set rͭ uͯ Ͱ, we get O uͱ Ͱ .

ͰͲ

Algorithm Ͱ: Analysis

• Find Σ(Sͭ) in Õ(nͭrͭ) = Õ(min(n, rͭ)rͭ) time.
• Find Σ(Sͮ), . . . ,Σ(Sk) in Õ(uͯ/rͭ) time.
• Find ⊕ki=ͭΣ(Si) in Õ(ku) = Õ(u) time.

• Total running time O uͯ rͭ min n rͭ rͭ u .

• Set rͭ u n, we get O nu .
• Set rͭ uͯ Ͱ, we get O uͱ Ͱ .

ͰͲ

Algorithm Ͱ: Analysis

• Find Σ(Sͭ) in Õ(nͭrͭ) = Õ(min(n, rͭ)rͭ) time.
• Find Σ(Sͮ), . . . ,Σ(Sk) in Õ(uͯ/rͭ) time.
• Find ⊕ki=ͭΣ(Si) in Õ(ku) = Õ(u) time.
• Total running time Õ(uͯ/rͭ +min(n, rͭ)rͭ + u).

• Set rͭ u n, we get O nu .
• Set rͭ uͯ Ͱ, we get O uͱ Ͱ .

ͰͲ

Algorithm Ͱ: Analysis

• Find Σ(Sͭ) in Õ(nͭrͭ) = Õ(min(n, rͭ)rͭ) time.
• Find Σ(Sͮ), . . . ,Σ(Sk) in Õ(uͯ/rͭ) time.
• Find ⊕ki=ͭΣ(Si) in Õ(ku) = Õ(u) time.
• Total running time Õ(uͯ/rͭ +min(n, rͭ)rͭ + u).

• Set rͭ = u/
√
n, we get Õ(

√
nu).

• Set rͭ = uͯ/Ͱ, we get Õ(uͱ/Ͱ).

ͰͲ

Lower bound?

There exist inputs xͮ < . . . < xn, such that any divide-and-conquer
algorithm that computes Σ(S) by

• add parenthesis to this expression

Σ(xͮ)⊕ . . .⊕Σ(xn),

• compute all the intermediate output,

takes Ω(min(
√
nt, tͱ/Ͱ)) time.

Ͱͳ

Subset sums in Zm

Overview of the result

Zm = {ͭ, . . . ,m− ͮ}, the integers modulo m.

Theorem
Let S m be a set of size n. S can be found in
O min nm mͲ ͱ time.

Not an adaptation of Algorithm Ͱ.

Ͱʹ

Overview of the result

Zm = {ͭ, . . . ,m− ͮ}, the integers modulo m.

Theorem
Let S ⊆ Zm be a set of size n. Σ(S) can be found in
Õ
(
min(

√
nm,mͲ/ͱ)

)
time.

Not an adaptation of Algorithm Ͱ.

Ͱʹ

Overview of the result

Zm = {ͭ, . . . ,m− ͮ}, the integers modulo m.

Theorem
Let S ⊆ Zm be a set of size n. Σ(S) can be found in
Õ
(
min(

√
nm,mͲ/ͱ)

)
time.

Not an adaptation of Algorithm Ͱ.

Ͱʹ

The challenge

• Algorithm Ͱ throws away sums that fall outside [u].

• All operations in m stays in m.

Ͱ͵

The challenge

• Algorithm Ͱ throws away sums that fall outside [u].
• All operations in Zm stays in Zm.

Ͱ͵

Basic number theory definition/facts

Z
∗
m = {x|x ∈ Zm, gcd(x,m) = ͮ}, the set of units of Zm.

Assume is large enough m
ͮ

log logm in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when
S m, and then apply divide and conquer depending on the
divisibility of the elements in S.

ͰͶ

Basic number theory definition/facts

Z
∗
m = {x|x ∈ Zm, gcd(x,m) = ͮ}, the set of units of Zm.

Assume ℓ is large enough (Ω(m
ͮ

log logm)) in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when
S m, and then apply divide and conquer depending on the
divisibility of the elements in S.

ͰͶ

Basic number theory definition/facts

Z
∗
m = {x|x ∈ Zm, gcd(x,m) = ͮ}, the set of units of Zm.

Assume ℓ is large enough (Ω(m
ͮ

log logm)) in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when
S ⊆ Z

∗
m, and then apply divide and conquer depending on the

divisibility of the elements in S.

ͰͶ

Subset sums in Zm

S ⊆ Z
∗

m

Segments

A segment of length ℓ is a set of the form x[ℓ] = {ͭ, x, ͯx, . . . , ℓx}. 4e
denote X[ℓ] = {ix|x ∈ X, i ∈ [ℓ]}.

S can be found quickly if S is covered by a segment.

Theorem
S m is a n element subset of x , then S can be found in O n
time.

ͱͭ

Segments

A segment of length ℓ is a set of the form x[ℓ] = {ͭ, x, ͯx, . . . , ℓx}. 4e
denote X[ℓ] = {ix|x ∈ X, i ∈ [ℓ]}.

Σ(S) can be found quickly if S is covered by a segment.

Theorem
S ⊆ Zm is a n element subset of x[ℓ], then Σ(S) can be found in Õ(nℓ)
time.

ͱͭ

The algorithm when input is in Z
∗

m

` = 3` = 3

5[`]5[`]

2[`]2[`]

S ⊆ Z11S ⊆ Z11

S1S1 S2S2 S5S5

1 3 4 5 6 10

X = {1, 2, 5}X = {1, 2, 5}

1[`]1[`]

4e partition the input by segments.

• Find X, such that S ⊆ X[ℓ].

• Create a partition Sx x X of S, such that Sx x .
• return x X Sx .

ͱͮ

The algorithm when input is in Z
∗

m

` = 3` = 3

5[`]5[`]

2[`]2[`]

S ⊆ Z11S ⊆ Z11

S1S1 S2S2 S5S5

1 3 4 5 6 10

X = {1, 2, 5}X = {1, 2, 5}

1[`]1[`]

4e partition the input by segments.

• Find X, such that S ⊆ X[ℓ].
• Create a partition {Sx|x ∈ X} of S, such that Sx ⊆ x[ℓ].

• return x X Sx .

ͱͮ

The algorithm when input is in Z
∗

m

` = 3` = 3

5[`]5[`]

2[`]2[`]

S ⊆ Z11S ⊆ Z11

S1S1 S2S2 S5S5

1 3 4 5 6 10

X = {1, 2, 5}X = {1, 2, 5}

1[`]1[`]

4e partition the input by segments.

• Find X, such that S ⊆ X[ℓ].
• Create a partition {Sx|x ∈ X} of S, such that Sx ⊆ x[ℓ].
• return

⊕
x∈XΣ(Sx).

ͱͮ

The algorithm when input is in Z
∗

m

The running time:

• The time for finding X, say T n m
• Find subset sums for Sx takes O Sx . The total time over all
Sx is x X O Sx O n .

• x X Sx takes O X m time.

The total running time is O T n m n X m . 4e need to find a
small X that induces a cover of S, and we have to find one fast.

ͱͯ

The algorithm when input is in Z
∗

m

The running time:

• The time for finding X, say T(n, ℓ,m)

• Find subset sums for Sx takes O Sx . The total time over all
Sx is x X O Sx O n .

• x X Sx takes O X m time.

The total running time is O T n m n X m . 4e need to find a
small X that induces a cover of S, and we have to find one fast.

ͱͯ

The algorithm when input is in Z
∗

m

The running time:

• The time for finding X, say T(n, ℓ,m)

• Find subset sums for Σ(Sx) takes Õ(|Sx|ℓ).

The total time over all
Sx is x X O Sx O n .

• x X Sx takes O X m time.

The total running time is O T n m n X m . 4e need to find a
small X that induces a cover of S, and we have to find one fast.

ͱͯ

The algorithm when input is in Z
∗

m

The running time:

• The time for finding X, say T(n, ℓ,m)

• Find subset sums for Σ(Sx) takes Õ(|Sx|ℓ). The total time over all
Sx is

∑
x∈X Õ(|Sx|ℓ) = Õ(nℓ).

• x X Sx takes O X m time.

The total running time is O T n m n X m . 4e need to find a
small X that induces a cover of S, and we have to find one fast.

ͱͯ

The algorithm when input is in Z
∗

m

The running time:

• The time for finding X, say T(n, ℓ,m)

• Find subset sums for Σ(Sx) takes Õ(|Sx|ℓ). The total time over all
Sx is

∑
x∈X Õ(|Sx|ℓ) = Õ(nℓ).

•
⊕

x∈XΣ(Sx) takes Õ(|X|m) time.

The total running time is Õ(T(n, ℓ,m) + nℓ+ |X|m).

4e need to find a
small X that induces a cover of S, and we have to find one fast.

ͱͯ

The algorithm when input is in Z
∗

m

The running time:

• The time for finding X, say T(n, ℓ,m)

• Find subset sums for Σ(Sx) takes Õ(|Sx|ℓ). The total time over all
Sx is

∑
x∈X Õ(|Sx|ℓ) = Õ(nℓ).

•
⊕

x∈XΣ(Sx) takes Õ(|X|m) time.

The total running time is Õ(T(n, ℓ,m) + nℓ+ |X|m). 4e need to find a
small X that induces a cover of S, and we have to find one fast.

ͱͯ

Covering S ⊆ Z
∗

m by segments

Theorem
For any S ⊆ Z

∗
m, there exists a x ∈ Z

∗
m, such that |S ∩ x[ℓ]| = Ω(ℓ

m |S|).

• b x if there exists a such that ax b mod m .
• ax b mod m has exactly one solution if a b m.
• Each b m is covered by m segments: For each
a m, there is a unique x such that b x .

•

uniform x m

b covered by x m

m m

• For any subset S m, there is a x that covers S m elements
in S in expectation.

ͱͰ

Covering S ⊆ Z
∗

m by segments

Theorem
For any S ⊆ Z

∗
m, there exists a x ∈ Z

∗
m, such that |S ∩ x[ℓ]| = Ω(ℓ

m |S|).

• b ∈ x[ℓ] if there exists a ∈ [ℓ] such that ax ≡ b (mod m).

• ax b mod m has exactly one solution if a b m.
• Each b m is covered by m segments: For each
a m, there is a unique x such that b x .

•

uniform x m

b covered by x m

m m

• For any subset S m, there is a x that covers S m elements
in S in expectation.

ͱͰ

Covering S ⊆ Z
∗

m by segments

Theorem
For any S ⊆ Z

∗
m, there exists a x ∈ Z

∗
m, such that |S ∩ x[ℓ]| = Ω(ℓ

m |S|).

• b ∈ x[ℓ] if there exists a ∈ [ℓ] such that ax ≡ b (mod m).
• ax ≡ b (mod m) has exactly one solution if a,b ∈ Z

∗
m.

• Each b m is covered by m segments: For each
a m, there is a unique x such that b x .

•

uniform x m

b covered by x m

m m

• For any subset S m, there is a x that covers S m elements
in S in expectation.

ͱͰ

Covering S ⊆ Z
∗

m by segments

Theorem
For any S ⊆ Z

∗
m, there exists a x ∈ Z

∗
m, such that |S ∩ x[ℓ]| = Ω(ℓ

m |S|).

• b ∈ x[ℓ] if there exists a ∈ [ℓ] such that ax ≡ b (mod m).
• ax ≡ b (mod m) has exactly one solution if a,b ∈ Z

∗
m.

• Each b ∈ Z
∗
m is covered by [ℓ] ∩ Z

∗
m segments: For each

a ∈ [ℓ] ∩ Z
∗
m, there is a unique x such that b ∈ x[ℓ].

•

uniform x m

b covered by x m

m m

• For any subset S m, there is a x that covers S m elements
in S in expectation.

ͱͰ

Covering S ⊆ Z
∗

m by segments

Theorem
For any S ⊆ Z

∗
m, there exists a x ∈ Z

∗
m, such that |S ∩ x[ℓ]| = Ω(ℓ

m |S|).

• b ∈ x[ℓ] if there exists a ∈ [ℓ] such that ax ≡ b (mod m).
• ax ≡ b (mod m) has exactly one solution if a,b ∈ Z

∗
m.

• Each b ∈ Z
∗
m is covered by [ℓ] ∩ Z

∗
m segments: For each

a ∈ [ℓ] ∩ Z
∗
m, there is a unique x such that b ∈ x[ℓ].

•
E

uniform x∈Z
∗

m

[b covered by x[ℓ]] = |[ℓ] ∩ Z
∗
m|

|Z∗
m|

= Ω(
ℓ

m)

• For any subset S m, there is a x that covers S m elements
in S in expectation.

ͱͰ

Covering S ⊆ Z
∗

m by segments

Theorem
For any S ⊆ Z

∗
m, there exists a x ∈ Z

∗
m, such that |S ∩ x[ℓ]| = Ω(ℓ

m |S|).

• b ∈ x[ℓ] if there exists a ∈ [ℓ] such that ax ≡ b (mod m).
• ax ≡ b (mod m) has exactly one solution if a,b ∈ Z

∗
m.

• Each b ∈ Z
∗
m is covered by [ℓ] ∩ Z

∗
m segments: For each

a ∈ [ℓ] ∩ Z
∗
m, there is a unique x such that b ∈ x[ℓ].

•
E

uniform x∈Z
∗

m

[b covered by x[ℓ]] = |[ℓ] ∩ Z
∗
m|

|Z∗
m|

= Ω(
ℓ

m)

• For any subset S ⊆ Z
∗
m, there is a x[ℓ] that covers |S| ℓm elements

in S in expectation.

ͱͰ

Cover S with segments

Algorithm
GreedySetCover(S ⊆ Z

∗
m)

ͮ. Pick x[ℓ] such that |x[ℓ] ∩ S| is maximized.
ͯ. S← S \ x[ℓ]
Ͱ. GreedySetCover(S)

Finds a cover of size O(mℓ logn) in O(nℓ) time.

ͱͱ

Subset sums in Z
∗

m

Theorem
All subset sums with input S ⊆ Z

∗
m can be solved in Õ(

√
nm) time.

Proof.

Õ(T(n, ℓ,m) + nℓ+ (
m
ℓ
)m) = Õ(m

ͯ

ℓ
+ nℓ)

Let ℓ = m√
n .

4e can assume n O m .

Theorem ([Hamidoune, Llad & Serra ͭ͵])
If S m and S ͯ m, then S m.

Theorem
All subset sums in m can be solved in O min nm mͲ ͱ time.

ͱͲ

Subset sums in Z
∗

m

Theorem
All subset sums with input S ⊆ Z

∗
m can be solved in Õ(

√
nm) time.

Proof.

Õ(T(n, ℓ,m) + nℓ+ (
m
ℓ
)m) = Õ(m

ͯ

ℓ
+ nℓ)

Let ℓ = m√
n .

4e can assume n = O(
√
m).

Theorem ([Hamidoune, Llad & Serra ͭ͵])
If S m and S ͯ m, then S m.

Theorem
All subset sums in m can be solved in O min nm mͲ ͱ time.

ͱͲ

Subset sums in Z
∗

m

Theorem
All subset sums with input S ⊆ Z

∗
m can be solved in Õ(

√
nm) time.

Proof.

Õ(T(n, ℓ,m) + nℓ+ (
m
ℓ
)m) = Õ(m

ͯ

ℓ
+ nℓ)

Let ℓ = m√
n .

4e can assume n = O(
√
m).

Theorem ([Hamidoune, Llad & Serra ͭ͵])
If S ⊆ Z

∗
m and |S| ≥ ͯ

√
m, then Σ(S) = Zm.

Theorem
All subset sums in m can be solved in O min nm mͲ ͱ time.

ͱͲ

Subset sums in Z
∗

m

Theorem
All subset sums with input S ⊆ Z

∗
m can be solved in Õ(

√
nm) time.

Proof.

Õ(T(n, ℓ,m) + nℓ+ (
m
ℓ
)m) = Õ(m

ͯ

ℓ
+ nℓ)

Let ℓ = m√
n .

4e can assume n = O(
√
m).

Theorem ([Hamidoune, Llad & Serra ͭ͵])
If S ⊆ Z

∗
m and |S| ≥ ͯ

√
m, then Σ(S) = Zm.

Theorem
All subset sums in Z

∗
m can be solved in Õ(min(

√
nm,mͲ/ͱ)) time.

ͱͲ

Subset sums in Zm

S ⊆ Zm

Definitions

• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.

• m m ͮ.
• m m m.

4e define AllSubsetSums S m d as an algorithm that finds all
subset sums of S in m, if S m d

4e solved the case for AllSubsetSums S m ͮ .

S AllSubsetSums S m m

ͱͳ

Definitions

• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.
• Z∗

m = Zm,ͮ.

• m m m.

4e define AllSubsetSums S m d as an algorithm that finds all
subset sums of S in m, if S m d

4e solved the case for AllSubsetSums S m ͮ .

S AllSubsetSums S m m

ͱͳ

Definitions

• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.
• Z∗

m = Zm,ͮ.
• Zm = Zm,m.

4e define AllSubsetSums S m d as an algorithm that finds all
subset sums of S in m, if S m d

4e solved the case for AllSubsetSums S m ͮ .

S AllSubsetSums S m m

ͱͳ

Definitions

• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.
• Z∗

m = Zm,ͮ.
• Zm = Zm,m.

4e define AllSubsetSums(S,m,d) as an algorithm that finds all
subset sums of S in Zm, if S ⊆ Zm,d

4e solved the case for AllSubsetSums S m ͮ .

S AllSubsetSums S m m

ͱͳ

Definitions

• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.
• Z∗

m = Zm,ͮ.
• Zm = Zm,m.

4e define AllSubsetSums(S,m,d) as an algorithm that finds all
subset sums of S in Zm, if S ⊆ Zm,d

4e solved the case for AllSubsetSums(S,m, ͮ).

Σ(S) = AllSubsetSums(S,m,m)

ͱͳ

The algorithm for all subset sums in Zm

• S/p = {s/p : s ∈ S,p|s}
• S%p = {s : s ∈ S,p ̸ |s}

Algorithm
AllSubsetSums S m d :

ͮ. d ͮ, use the previous algorithm.
ͯ. p the largest prime factor of d
Ͱ. [All elements in S divisible by p]
A AllSubsetSums S p m p d p

ͱ. [All elements in S not divisible by p]
B AllSubsetSums S p m d p

Ͳ. return p A B

ͱʹ

The algorithm for all subset sums in Zm

• S/p = {s/p : s ∈ S,p|s}
• S%p = {s : s ∈ S,p ̸ |s}

Algorithm
AllSubsetSums(S,m,d):

ͮ. d = ͮ, use the previous algorithm.
ͯ. p← the largest prime factor of d
Ͱ. [All elements in S divisible by p]
A← AllSubsetSums(S/p,m/p,d/p)

ͱ. [All elements in S not divisible by p]
B← AllSubsetSums(S%p,m,d/p)

Ͳ. return (p · A)⊕ B

ͱʹ

Example recursion tree where S = Zͳ

0 1 2 3 4 5

S = Z6S = Z6

ͱ͵

Example recursion tree where S = Zͳ

0 1 2 3 4 5

S = Z6S = Z6

p = 3, d = 6p = 3, d = 6

ͱͶ

Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5

S = Z6S = Z6

%p%pp = 3, d = 6p = 3, d = 6

Ͳͭ

Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

S = Z6S = Z6

%p%p /p/pp = 3, d = 6p = 3, d = 6

Ͳͮ

Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

S = Z6S = Z6

%p%p /p/pp = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2

Ͳͯ

Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2

S = Z6S = Z6

/p/p

%p%p

%p%p

/p/p

2 41 5

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2

ͲͰ

Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2 1 0

S = Z6S = Z6

/p/p

%p%p

%p%p %p%p /p/p

/p/p

2 4 3 01 5

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2

Ͳͱ

Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2 1 0

S = Z6S = Z6

/p/p

%p%p

%p%p %p%p /p/p

/p/p

2 4 3 01 5

Leaves

Internal

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2

ͲͲ

Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2 1 0

S = Z6S = Z6

/p/p

%p%p

%p%p %p%p /p/p

/p/p

2 4 3 01 5

Leaves

Internal

DivisorsDivisors d1 = 6d1 = 6 d2 = 3d2 = 3 d3 = 2d3 = 2 d4 = 1d4 = 1

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2

Ͳͳ

Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2 1 0

S = Z6S = Z6

/p/p

%p%p

%p%p %p%p /p/p

/p/p

2 4 3 01 5

⊕⊕
⊕⊕

⊕⊕

Leaves

Internal

DivisorsDivisors d1 = 6d1 = 6 d2 = 3d2 = 3 d3 = 2d3 = 2 d4 = 1d4 = 1

Levels

O(logm)O(logm)

Total size σ1(m) = O(m log logm)σ1(m) = O(m log logm)

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2

σi(m) =
∑

d|m di.
Ͳʹ

Run time analysis: Leaves

d1d1 d2d2 d3d3

.

dkdk

S1S1 S2S2 S3S3 SkSk

Compute Σ(Si) for each i. |Si| = ni. di ≤ m/i is the ith largest divisor
of m.

Õ(
∑

i

min(
√
nidi,d

Ͳ/ͱ
i))

=Õ(
∑

i

min(
√
nim/i, (m/i)Ͳ/ͱ))

=Õ(min(
√
nm,mͲ/ͱ))

Ͳ͵

Run time analysis: Internal nodes

⊕⊕

dd

dd d/pd/p

• There are O(logm) levels.
• Each level, the time spent on ⊕ is
Õ(

∑
d|m d) = Õ(σͮ(m)) = Õ(m).

• The total running time over internal nodes are Õ(m).

ͲͶ

Run time analysis

Theorem
All subset sums in Zm can be solved in Õ(min(

√
nm,mͲ/ͱ)).

ͳͭ

Open Problems

Open Problems: Deterministic near linear time algorithm

Is there a deterministic Õ(t) time algorithm for the subset sum
problem matching its conditional lower bound?

ͳͮ

Open Problems: Output sensitive subset sum

Let k = |Σ(S) ∩ [t]|. Assume k≪ t.

• Known: subset sum in O(nk) time use Bellman’s DP algorithm.
• Can we obtain an algorithm with Õ(

√
nk) running time?

ͳͯ

Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f m m

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ͮͰ])

• f m O m if m is prime.

• f m mͮ o ͮ .

Theorem ([Koiliaris & 9u ‘ͮʹ])

f m ͭ m O ͮ m logm mͮ o ͮ

Conjecture: f m O m

ͳͰ

Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f(m, ℓ) ≥
⌈m

ℓ

⌉

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ͮͰ])

• f m O m if m is prime.

• f m mͮ o ͮ .

Theorem ([Koiliaris & 9u ‘ͮʹ])

f m ͭ m O ͮ m logm mͮ o ͮ

Conjecture: f m O m

ͳͰ

Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f(m, ℓ) ≥
⌈m

ℓ

⌉

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ͮͰ])

• f(m, ℓ) = O(mℓ) if m is prime.

• f(m, ℓ) = mͮ+o(ͮ)
√
ℓ
.

Theorem ([Koiliaris & 9u ‘ͮʹ])

f m ͭ m O ͮ m logm mͮ o ͮ

Conjecture: f m O m

ͳͰ

Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f(m, ℓ) ≥
⌈m

ℓ

⌉

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ͮͰ])

• f(m, ℓ) = O(mℓ) if m is prime.

• f(m, ℓ) = mͮ+o(ͮ)
√
ℓ
.

Theorem ([Koiliaris & 9u ‘ͮʹ])

f(m, ℓ) = σͭ(m) + O(σͮ(m) logm/ℓ) = mͮ+o(ͮ)

ℓ

Conjecture: f m O m

ͳͰ

Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f(m, ℓ) ≥
⌈m

ℓ

⌉

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ͮͰ])

• f(m, ℓ) = O(mℓ) if m is prime.

• f(m, ℓ) = mͮ+o(ͮ)
√
ℓ
.

Theorem ([Koiliaris & 9u ‘ͮʹ])

f(m, ℓ) = σͭ(m) + O(σͮ(m) logm/ℓ) = mͮ+o(ͮ)

ℓ

Conjecture: f(m, ℓ) = O(mℓ)

ͳͰ

Thank you

ͳͰ

	Subset sums in N
	Subset sums in Zm
	SZm*
	SZm

	Open Problems

