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The Subset Sum Problem

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn and a target
number t.

Output: Is there a subset T of S such that xi T xi t?
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The Subset Sum Problem

Classic problem.

One of Karp’s original NP-hard problems.
[Karp ’ʹͯ]

4eakly NP-complete

Textbook DP algorithm due to Bellman that runs in O nt
pseudopolynomial time.

[Bellman ’Ͳͳ]
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The Subset Sum Problem

Classic problem.

One of Karp’s original NP-hard problems.
[Karp ’ʹͯ]

4eakly NP-complete

Textbook DP algorithm due to Bellman that runs in O(nt)
pseudopolynomial time.

[Bellman ’Ͳͳ]
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4hy pseudopolynomial time algorithm?

Faster pseudopolynomial time algorithm for subset sum implies
faster polynomial time algorithms for various problems.
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Applications

As a subroutine:

• knapsack
• scheduling
• graph problems with cardinality constraints

In practice:

• power indices (3oting Theory)
• set-based queries (Database)
• Subset sum based keys (Security)
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Previous 4ork: Deterministic pseudopolynomial algorithms

• Original DP solution: O(nt) — [Bellman ’Ͳͳ]

• Fast for small max S: O nmax S — [Pisinger ’Ͷͮ]

• Fast for small : O Ͱ ͯ — [Klinz et al. ’ͶͶ]

• Data structure: O nmax S — [Eppstein ’Ͷ ,ʹ Serang ’ͮ ͱ, ’ͮ Ͳ]

• RAM Model implementation of Bellman: O nt log t — [Pisinger
’ͭͰ]

• First poly space algorithm: O nͰt — [Lokshtanov et al. ’ͮ ͭ]
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Our Contribution

Main Theorem [Koiliaris & 9u ‘ͮʹ]. The subset sum problem can be
decided in Õ

(
min

{√
nt, t ͱ/Ͱ

})
time.

Fastest deterministic pseudopolynomial time algorithm for the
problem.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in O t , with
one-sided error probability ͮ n.

[Bringmann ’ͮ ʹ]

Conditional lower bound: Subset sum solvable in O poly n tͮ for
any ͭ implies faster algorithms for a wide variety of problems
including set cover. [Bringmann ’ͮ ʹ]
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3ariants: Addition in Zm

Input: A set S ⊆ Zm of n numbers a target t ∈ Zm.

Output: Is there a subset T of S such that
∑

x∈T x = t?

Solvable in O nm time using Bellman’s DP.

Theorem ([Koiliaris & 9u ‘ͮʹ])
The subset sum problem in m can be decided in
O min nm m Ͳ ͱ time.

Different from the algorithm in !

ʹ



3ariants: Addition in Zm

Input: A set S ⊆ Zm of n numbers a target t ∈ Zm.

Output: Is there a subset T of S such that
∑

x∈T x = t?

Solvable in O(nm) time using Bellman’s DP.

Theorem ([Koiliaris & 9u ‘ͮʹ])
The subset sum problem in m can be decided in
O min nm m Ͳ ͱ time.

Different from the algorithm in !

ʹ



3ariants: Addition in Zm

Input: A set S ⊆ Zm of n numbers a target t ∈ Zm.

Output: Is there a subset T of S such that
∑

x∈T x = t?

Solvable in O(nm) time using Bellman’s DP.

Theorem ([Koiliaris & 9u ‘ͮʹ])
The subset sum problem in Zm can be decided in
Õ
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3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O nt time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi , then it’s the coin change problem.
• O nxͮ time [Böcker and Lipták ‘ͭʹ]
• O t time. [Bringmann ’ͮ ʹ]

͵



3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]

• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi , then it’s the coin change problem.
• O nxͮ time [Böcker and Lipták ‘ͭʹ]
• O t time. [Bringmann ’ͮ ʹ]

͵



3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi , then it’s the coin change problem.
• O nxͮ time [Böcker and Lipták ‘ͭʹ]
• O t time. [Bringmann ’ͮ ʹ]

͵



3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi =∞, then it’s the coin change problem.

• O nxͮ time [Böcker and Lipták ‘ͭʹ]
• O t time. [Bringmann ’ͮ ʹ]

͵



3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi =∞, then it’s the coin change problem.
• O(nxͮ) time [Böcker and Lipták ‘ͭʹ]

• O t time. [Bringmann ’ͮ ʹ]

͵



3ariants: multiset

Input: ͯn natural numbers xͮ, xͯ, xͰ, . . . , xn,bͮ, . . . ,bn and a target
number t.

Output: Does there exist non-negative integers cͮ, . . . , cn, such that∑n
i=ͮ cixi = t and ci ≤ bi?

• Solvable in O(nt) time directly. [Faaland ‘ʹͰ]
• Reduces to subset sum with polylog factor blowup in near linear
time. [Lawler ‘ʹͶ]

• If all bi =∞, then it’s the coin change problem.
• O(nxͮ) time [Böcker and Lipták ‘ͭʹ]
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3ariants: Subset sums with cardinality constraint

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn, cardinality
constraint k and target number t.

Output: Does there exists a subset of S of size k that sums to t?

• Solvable in O(knt) time by modifying Bellman’s DP.

• 4e can solve it in O nt time.
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Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn, cardinality
constraint k and target number t.

Output: Does there exists a subset of S of size k that sums to t?

• Solvable in O(knt) time by modifying Bellman’s DP.
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3ariants: Return a solution

• Instead of the decision problem, what if we want the actual set
that realizes the target?

• Our algorithm handles it with polylog factor slow down.
• 4e can also count the number of solutions faster than the
standard dynamic programming algorithm.
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Outline of the talk

4e present two algorithms:

• Solve subset sum in N.
• Solve subset sum in Zm.

ͮͮ



Subset sums in N



All Subset Sums

To solve the subset sum problem, we will consider the following all
subset sums problem:

Given a set S of n natural numbers and an (upper bound) u, compute
all the realizable sums up to u.
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Notations

• [x..y] = {x, x+ ͮ, . . . , y} is the set of integers in the interval [x, y].

• u ͭ u .
• For two sets X and Y, X Y x y x X and y Y .
• The set of all subset sums of S is denoted by

S
t T

t T S

Finding all subset sums of S up to u: compute S u .
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Notations

• [x..y] = {x, x+ ͮ, . . . , y} is the set of integers in the interval [x, y].
• [u] = [ͭ..u].
• For two sets X and Y, X⊕ Y = {x+ y | x ∈ X and y ∈ Y}.
• The set of all subset sums of S is denoted by

Σ(S) =
{
∑

t∈T
t
∣∣∣∣∣ T ⊆ S

}
.

Finding all subset sums of S up to u: compute Σ(S) ∩ [u].
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Divide and conquer

Fact. If P and Q form a partition of a set S, then Σ(P)⊕Σ(Q) = Σ(S).

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

• Partition the set S into two sets
• Recursively compute their subset sums
• Combine them together with .
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Review of the Bellman’s dynamic programming algorithm

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn and an upper
bound u.

Algorithm:

• Tͭ ← {ͭ}.
• Ti ← Ti−ͮ ∪ {s+ xi|s ∈ Ti−ͮ, s+ xi ≤ u}.

O(nu) time.
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Alternative view

Input: A set S of n natural numbers xͮ, xͯ, xͰ, . . . , xn and an upper
bound u.

Algorithm:

• return [u] ∩⊕n
i=ͮΣ({xi}).

Σ({x}) = {ͭ, x}.

ͮͳ



Convolution algorithm

Theorem. Given A,B ⊆ [u], A⊕ B can be computed in
O(u logu) = Õ(u) time.

Just use FFT

Theorem. Given A B u v , A B can be computed in
O uv loguv O uv time.

ͮʹ



Convolution algorithm

Theorem. Given A,B ⊆ [u], A⊕ B can be computed in
O(u logu) = Õ(u) time.

Just use FFT

Theorem. Given A,B ⊆ [u]× [v], A⊕ B can be computed in
O(uv loguv) = Õ(uv) time.
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Two algorithms for all subset sums

If S ⊆ [x..x+ ℓ], then we will show that Σ(S) ∩ [u] can be found in

• O(n(x+ ℓ)) time. (Algorithm ͮ)
• O((u/x)ͯℓ) time. (Algorithm ͯ)

4e balance the running time of both algorithms to get the desired
result.
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Algorithm ͮ: Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.

Proof Sketch.

• Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L and R .

• The sets L R n x . L R in O n x time.
•

T n ͯT n ͯ O n x

• Solves to T n O n x
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•
T n ͯT n ͯ O n x

• Solves to T n O n x

ͮͶ



Algorithm ͮ: Proof and analysis

Lemma Given a set S of n numbers in [x..x+ ℓ], one can compute the
set of all subset sums Σ(S) in Õ(n(x+ ℓ)) time.
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Algorithm ͯ: Idea

Lemma. Given a set S ⊆ [x..x+ ℓ] of size n, computing the set
Σ(S) ∩ [u] takes Õ

(
(u/x)ͯℓ

)
time.

Main idea If elements in S are larger than u, we can throw it away.
Sum of any u

x ͮ elements is greater than u, then we only need
subset sums using size u

x subsets.

Proof Sketch. Same algorithm:

ͮ. Partition S into L and R
ͯ. Compute L u and R u recursively
Ͱ. Combine through (a smarter implementation of) .
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+ ͮ elements is greater than u, then we only need

subset sums using size
⌊u
x
⌋
subsets.

Proof Sketch. Same algorithm:

ͮ. Partition S into L and R
ͯ. Compute L u and R u recursively
Ͱ. Combine through (a smarter implementation of) .
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Lemma. Given a set S ⊆ [x..x+ ℓ] of size n, computing the set
Σ(S) ∩ [u] takes Õ

(
(u/x)ͯℓ

)
time.

Main idea If elements in Σ(S) are larger than u, we can throw it away.
Sum of any

⌊u
x
⌋
+ ͮ elements is greater than u, then we only need

subset sums using size
⌊u
x
⌋
subsets.

Proof Sketch. Same algorithm:

ͮ. Partition S into L and R
ͯ. Compute Σ(L) ∩ [u] and Σ(R) ∩ [u] recursively
Ͱ. Combine through (a smarter implementation of) ⊕.
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Algorithm ͯ: A single recursive step

SS
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LL RR

xx x+ `x+ `

ͯͯ



Algorithm ͯ: A single recursive step

SS

δδ

LL RR

xx x+ `x+ `

(Σ(L) ∩ [u])⊕ (Σ(R) ∩ [u])(Σ(L) ∩ [u])⊕ (Σ(R) ∩ [u])
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Algorithm ͯ: A single recursive step

• z ∈ Σ(L) ∩ [u].

• For some L L, z s L s x t L x t, t .
• L u x k.
• z ix j, where i k j k .
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Algorithm ͯ: A single recursive step

• z ∈ Σ(L) ∩ [u].
• For some L′ ⊆ L, z = ∑

s∈L′ s =
∑

x+t∈L′ x+ t, t ∈ [ℓ].

• L u x k.
• z ix j, where i k j k .
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• z ∈ Σ(L) ∩ [u].
• For some L′ ⊆ L, z = ∑

s∈L′ s =
∑

x+t∈L′ x+ t, t ∈ [ℓ].
• |L′| ≤ ⌊u/x⌋ = k.

• z ix j, where i k j k .
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Algorithm ͯ: A single recursive step

• z ∈ Σ(L) ∩ [u].
• For some L′ ⊆ L, z = ∑

s∈L′ s =
∑

x+t∈L′ x+ t, t ∈ [ℓ].
• |L′| ≤ ⌊u/x⌋ = k.
• z = ix+ j, where i ∈ [k], j ∈ [ℓk].
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Algorithm ͯ: A single recursive step

∈∈

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

k =

j

u

x

k

k =

j

u

x

k

z = ix+ jz = ix+ j
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Algorithm ͯ: A single recursive step

∈∈

ΦΦ (i, j)(i, j)

Lift to 2D

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

k =

j

u

x

k

k =

j

u

x

k

z = ix+ jz = ix+ j
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Algorithm ͯ: A single recursive step

∈∈

ΦΦ (i, j)(i, j)

Lift to 2D

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

A = Φ(Σ(L) ∩ [u])

B = Φ(Σ(R) ∩ [u])

A = Φ(Σ(L) ∩ [u])

B = Φ(Σ(R) ∩ [u])

A,B ⊆ [k]× [`k]A,B ⊆ [k]× [`k]

ΦΦ

k =

j

u

x

k

k =

j

u

x

k

z = ix+ jz = ix+ j
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Algorithm ͯ: A single recursive step

∈∈

ΦΦ (i, j)(i, j)

Lift to 2D

Σ(L) ∩ [u]

Σ(R) ∩ [u]

Σ(L) ∩ [u]

Σ(R) ∩ [u]

i ∈ [k], j ∈ [`k]i ∈ [k], j ∈ [`k]

A = Φ(Σ(L) ∩ [u])

B = Φ(Σ(R) ∩ [u])

A = Φ(Σ(L) ∩ [u])

B = Φ(Σ(R) ∩ [u])

A,B ⊆ [k]× [`k]A,B ⊆ [k]× [`k]

A⊕BA⊕BΦ
−1

Φ
−1Σ(L)⊕ Σ(R)Σ(L)⊕ Σ(R)

∩[u]∩[u]
Õ(`k2)Õ(`k2) time

ΦΦ

=

k =

j

u

x

k

k =

j

u

x

k

Õ((u/x)2`)Õ((u/x)2`)

z = ix+ jz = ix+ j
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Algorithm ͯ: Run time analysis

Let T(n, ℓ) be the running time of Algorithm ͯ with input set
S ⊆ [x..x+ ℓ] of size n.

ͮ ͯ .

T n T n ͯ ͮ T n ͯ ͯ O u x ͯ

O u x ͯ
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Algorithm ͯ: Run time analysis

Let T(n, ℓ) be the running time of Algorithm ͯ with input set
S ⊆ [x..x+ ℓ] of size n.

ℓͮ + ℓͯ = ℓ.

T(n, ℓ) = T(n/ͯ, ℓͮ) + T(n/ͯ, ℓͯ) + Õ(ℓ(u/x)ͯ)
= Õ(ℓ(u/x)ͯ)
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Algorithm Ͱ

Algorithm
AllSubsetSumͰ(S,u):

• Partition [u] into intervals Ii = [ri−ͮ..ri − ͮ] for ͭ ≤ i ≤ k.
• Let Si ← Ii ∩ S.
• Compute Σ(Sͭ) using Algorithm ͮ.
• Compute Σ(Si) using Algorithm ͯ for ͮ ≤ i ≤ k.
• Return

⊕k
i=ͭΣ(Si).

Ͱͭ



Algorithm Ͱ

00 uu

. . .. . .

r0r0 r1r1 r2r2 rk−1rk−1 rk =rk =

ri = b2ir0cri = b2ir0c Si = S ∩ [ri−1..ri − 1]Si = S ∩ [ri−1..ri − 1]

k = O(log u)k = O(log u) ni = |Si|ni = |Si|
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Algorithm Ͱ

00 uu

. . .. . .

r0r0 r1r1 r2r2 rk−1rk−1 rk =rk =

S0S0 Σ(S0)Σ(S0)

Algorithm 1

Find

Õ(n0r0)Õ(n0r0)

r0r000
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Algorithm Ͱ

00 uu

. . .. . .

r0r0 rk−1rk−1 rk =rk =

Algorithm 2

Find

. . .. . .

ririri−1ri−1

Σ(Si)Σ(Si)

Õ((
u

ri−1

)2(ri − ri−1)) = Õ(u2/ri−1)Õ((
u

ri−1

)2(ri − ri−1)) = Õ(u2/ri−1)

SiSi

ͰͰ



Algorithm Ͱ

00 uu

. . .. . .

r0r0 rk−1rk−1 rk =rk =

Find

. . .. . .

Σ(Si)Σ(Si) for all 1 ≤ i ≤ k1 ≤ i ≤ k

kX

i=1

Õ(
u2

ri−1

) = Õ(
u2

r0
)

kX

i=1

Õ(
u2

ri−1

) = Õ(
u2

r0
)
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Algorithm Ͱ: Analysis

• Find Σ(Sͭ) in Õ(nͭrͭ) = Õ(min(n, rͭ)rͭ) time.

• Find Sͮ Sk in O uͯ rͭ time.
• Find k

i ͭ Si in O ku O u time.
• Total running time O uͯ rͭ min n rͭ rͭ u .

• Set rͭ u n, we get O nu .
• Set rͭ uͯ Ͱ, we get O uͱ Ͱ .
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• Find Σ(Sͮ), . . . ,Σ(Sk) in Õ(uͯ/rͭ) time.
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• Find Σ(Sͭ) in Õ(nͭrͭ) = Õ(min(n, rͭ)rͭ) time.
• Find Σ(Sͮ), . . . ,Σ(Sk) in Õ(uͯ/rͭ) time.
• Find ⊕ki=ͭΣ(Si) in Õ(ku) = Õ(u) time.
• Total running time Õ(uͯ/rͭ +min(n, rͭ)rͭ + u).

• Set rͭ u n, we get O nu .
• Set rͭ uͯ Ͱ, we get O uͱ Ͱ .
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Algorithm Ͱ: Analysis

• Find Σ(Sͭ) in Õ(nͭrͭ) = Õ(min(n, rͭ)rͭ) time.
• Find Σ(Sͮ), . . . ,Σ(Sk) in Õ(uͯ/rͭ) time.
• Find ⊕ki=ͭΣ(Si) in Õ(ku) = Õ(u) time.
• Total running time Õ(uͯ/rͭ +min(n, rͭ)rͭ + u).

• Set rͭ = u/
√
n, we get Õ(

√
nu).

• Set rͭ = uͯ/Ͱ, we get Õ(uͱ/Ͱ).

ͰͲ



Lower bound?

There exist inputs xͮ < . . . < xn, such that any divide-and-conquer
algorithm that computes Σ(S) by

• add parenthesis to this expression

Σ(xͮ)⊕ . . .⊕Σ(xn),

• compute all the intermediate output,

takes Ω(min(
√
nt, tͱ/Ͱ)) time.

Ͱͳ



Subset sums in Zm



Overview of the result

Zm = {ͭ, . . . ,m− ͮ}, the integers modulo m.

Theorem
Let S m be a set of size n. S can be found in
O min nm mͲ ͱ time.

Not an adaptation of Algorithm Ͱ.
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Overview of the result

Zm = {ͭ, . . . ,m− ͮ}, the integers modulo m.

Theorem
Let S ⊆ Zm be a set of size n. Σ(S) can be found in
Õ
(
min(

√
nm,mͲ/ͱ)

)
time.

Not an adaptation of Algorithm Ͱ.
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Overview of the result

Zm = {ͭ, . . . ,m− ͮ}, the integers modulo m.

Theorem
Let S ⊆ Zm be a set of size n. Σ(S) can be found in
Õ
(
min(

√
nm,mͲ/ͱ)

)
time.

Not an adaptation of Algorithm Ͱ.
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The challenge

• Algorithm Ͱ throws away sums that fall outside [u].

• All operations in m stays in m.
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The challenge

• Algorithm Ͱ throws away sums that fall outside [u].
• All operations in Zm stays in Zm.

Ͱ͵



Basic number theory definition/facts

Z
∗
m = {x|x ∈ Zm, gcd(x,m) = ͮ}, the set of units of Zm.

Assume is large enough m
ͮ

log logm in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when
S m, and then apply divide and conquer depending on the
divisibility of the elements in S.
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Basic number theory definition/facts

Z
∗
m = {x|x ∈ Zm, gcd(x,m) = ͮ}, the set of units of Zm.

Assume ℓ is large enough (Ω(m
ͮ

log logm )) in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when
S m, and then apply divide and conquer depending on the
divisibility of the elements in S.
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Basic number theory definition/facts

Z
∗
m = {x|x ∈ Zm, gcd(x,m) = ͮ}, the set of units of Zm.

Assume ℓ is large enough (Ω(m
ͮ

log logm )) in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when
S ⊆ Z

∗
m, and then apply divide and conquer depending on the

divisibility of the elements in S.

ͰͶ



Subset sums in Zm

S ⊆ Z
∗

m



Segments

A segment of length ℓ is a set of the form x[ℓ] = {ͭ, x, ͯx, . . . , ℓx}. 4e
denote X[ℓ] = {ix|x ∈ X, i ∈ [ℓ]}.

S can be found quickly if S is covered by a segment.

Theorem
S m is a n element subset of x , then S can be found in O n
time.

ͱͭ



Segments

A segment of length ℓ is a set of the form x[ℓ] = {ͭ, x, ͯx, . . . , ℓx}. 4e
denote X[ℓ] = {ix|x ∈ X, i ∈ [ℓ]}.

Σ(S) can be found quickly if S is covered by a segment.

Theorem
S ⊆ Zm is a n element subset of x[ℓ], then Σ(S) can be found in Õ(nℓ)
time.

ͱͭ



The algorithm when input is in Z
∗

m

` = 3` = 3

5[`]5[`]

2[`]2[`]

S ⊆ Z11S ⊆ Z11

S1S1 S2S2 S5S5

1 3 4 5 6 10

X = {1, 2, 5}X = {1, 2, 5}

1[`]1[`]

4e partition the input by segments.

• Find X, such that S ⊆ X[ℓ].

• Create a partition Sx x X of S, such that Sx x .
• return x X Sx .
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• return x X Sx .
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The algorithm when input is in Z
∗

m

` = 3` = 3

5[`]5[`]

2[`]2[`]

S ⊆ Z11S ⊆ Z11

S1S1 S2S2 S5S5

1 3 4 5 6 10

X = {1, 2, 5}X = {1, 2, 5}

1[`]1[`]

4e partition the input by segments.

• Find X, such that S ⊆ X[ℓ].
• Create a partition {Sx|x ∈ X} of S, such that Sx ⊆ x[ℓ].
• return

⊕
x∈XΣ(Sx).

ͱͮ



The algorithm when input is in Z
∗

m

The running time:

• The time for finding X, say T n m
• Find subset sums for Sx takes O Sx . The total time over all
Sx is x X O Sx O n .

• x X Sx takes O X m time.

The total running time is O T n m n X m . 4e need to find a
small X that induces a cover of S, and we have to find one fast.
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• The time for finding X, say T(n, ℓ,m)

• Find subset sums for Σ(Sx) takes Õ(|Sx|ℓ). The total time over all
Sx is

∑
x∈X Õ(|Sx|ℓ) = Õ(nℓ).

• x X Sx takes O X m time.

The total running time is O T n m n X m . 4e need to find a
small X that induces a cover of S, and we have to find one fast.
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Sx is

∑
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The algorithm when input is in Z
∗

m

The running time:
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Sx is
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The total running time is Õ(T(n, ℓ,m) + nℓ+ |X|m). 4e need to find a
small X that induces a cover of S, and we have to find one fast.
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Covering S ⊆ Z
∗

m by segments

Theorem
For any S ⊆ Z

∗
m, there exists a x ∈ Z

∗
m, such that |S ∩ x[ℓ]| = Ω( ℓ

m |S|).

• b x if there exists a such that ax b mod m .
• ax b mod m has exactly one solution if a b m.
• Each b m is covered by m segments: For each
a m, there is a unique x such that b x .

•

uniform x m

b covered by x m

m m

• For any subset S m, there is a x that covers S m elements
in S in expectation.
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Theorem
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∗
m, there exists a x ∈ Z

∗
m, such that |S ∩ x[ℓ]| = Ω( ℓ

m |S|).

• b ∈ x[ℓ] if there exists a ∈ [ℓ] such that ax ≡ b (mod m).
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∗
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∗
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∗
m segments: For each
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∗
m, there is a unique x such that b ∈ x[ℓ].

•
E

uniform x∈Z
∗

m

[b covered by x[ℓ]] = |[ℓ] ∩ Z
∗
m|

|Z∗
m|

= Ω(
ℓ

m )

• For any subset S ⊆ Z
∗
m, there is a x[ℓ] that covers |S| ℓm elements

in S in expectation.
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Cover S with segments

Algorithm
GreedySetCover(S ⊆ Z

∗
m)

ͮ. Pick x[ℓ] such that |x[ℓ] ∩ S| is maximized.
ͯ. S← S \ x[ℓ]
Ͱ. GreedySetCover(S)

Finds a cover of size O(mℓ logn) in O(nℓ) time.
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Subset sums in Z
∗

m

Theorem
All subset sums with input S ⊆ Z

∗
m can be solved in Õ(

√
nm) time.

Proof.

Õ(T(n, ℓ,m) + nℓ+ (
m
ℓ
)m) = Õ(m

ͯ

ℓ
+ nℓ)

Let ℓ = m√
n .

4e can assume n O m .

Theorem ([Hamidoune, Llad & Serra ͭ͵])
If S m and S ͯ m, then S m.

Theorem
All subset sums in m can be solved in O min nm mͲ ͱ time.
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Theorem ([Hamidoune, Llad & Serra ͭ͵])
If S m and S ͯ m, then S m.

Theorem
All subset sums in m can be solved in O min nm mͲ ͱ time.
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Subset sums in Z
∗

m

Theorem
All subset sums with input S ⊆ Z

∗
m can be solved in Õ(

√
nm) time.

Proof.

Õ(T(n, ℓ,m) + nℓ+ (
m
ℓ
)m) = Õ(m

ͯ

ℓ
+ nℓ)

Let ℓ = m√
n .

4e can assume n = O(
√
m).

Theorem ([Hamidoune, Llad & Serra ͭ͵])
If S ⊆ Z

∗
m and |S| ≥ ͯ

√
m, then Σ(S) = Zm.

Theorem
All subset sums in m can be solved in O min nm mͲ ͱ time.
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Subset sums in Z
∗

m

Theorem
All subset sums with input S ⊆ Z

∗
m can be solved in Õ(

√
nm) time.

Proof.

Õ(T(n, ℓ,m) + nℓ+ (
m
ℓ
)m) = Õ(m

ͯ

ℓ
+ nℓ)

Let ℓ = m√
n .

4e can assume n = O(
√
m).

Theorem ([Hamidoune, Llad & Serra ͭ͵])
If S ⊆ Z

∗
m and |S| ≥ ͯ

√
m, then Σ(S) = Zm.

Theorem
All subset sums in Z

∗
m can be solved in Õ(min(

√
nm,mͲ/ͱ)) time.
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Subset sums in Zm

S ⊆ Zm



Definitions

• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.

• m m ͮ.
• m m m.

4e define AllSubsetSums S m d as an algorithm that finds all
subset sums of S in m, if S m d

4e solved the case for AllSubsetSums S m ͮ .

S AllSubsetSums S m m
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• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.
• Z∗

m = Zm,ͮ.

• m m m.

4e define AllSubsetSums S m d as an algorithm that finds all
subset sums of S in m, if S m d
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subset sums of S in m, if S m d
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Definitions

• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.
• Z∗

m = Zm,ͮ.
• Zm = Zm,m.

4e define AllSubsetSums(S,m,d) as an algorithm that finds all
subset sums of S in Zm, if S ⊆ Zm,d

4e solved the case for AllSubsetSums S m ͮ .

S AllSubsetSums S m m
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Definitions

• Zm,d = {x : x ∈ Zm and gcd(x,m)|d}.
• Z∗

m = Zm,ͮ.
• Zm = Zm,m.

4e define AllSubsetSums(S,m,d) as an algorithm that finds all
subset sums of S in Zm, if S ⊆ Zm,d

4e solved the case for AllSubsetSums(S,m, ͮ).

Σ(S) = AllSubsetSums(S,m,m)

ͱͳ



The algorithm for all subset sums in Zm

• S/p = {s/p : s ∈ S,p|s}
• S%p = {s : s ∈ S,p ̸ |s}

Algorithm
AllSubsetSums S m d :

ͮ. d ͮ, use the previous algorithm.
ͯ. p the largest prime factor of d
Ͱ. [All elements in S divisible by p]
A AllSubsetSums S p m p d p

ͱ. [All elements in S not divisible by p]
B AllSubsetSums S p m d p

Ͳ. return p A B
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The algorithm for all subset sums in Zm

• S/p = {s/p : s ∈ S,p|s}
• S%p = {s : s ∈ S,p ̸ |s}

Algorithm
AllSubsetSums(S,m,d):

ͮ. d = ͮ, use the previous algorithm.
ͯ. p← the largest prime factor of d
Ͱ. [All elements in S divisible by p]
A← AllSubsetSums(S/p,m/p,d/p)

ͱ. [All elements in S not divisible by p]
B← AllSubsetSums(S%p,m,d/p)

Ͳ. return (p · A)⊕ B
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Example recursion tree where S = Zͳ

0 1 2 3 4 5

S = Z6S = Z6
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0 1 2 3 4 5
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%p%p /p/pp = 3, d = 6p = 3, d = 6
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Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

S = Z6S = Z6

%p%p /p/pp = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2
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Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2

S = Z6S = Z6

/p/p

%p%p

%p%p

/p/p

2 41 5

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2
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Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2 1 0

S = Z6S = Z6

/p/p

%p%p

%p%p %p%p /p/p

/p/p

2 4 3 01 5

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2
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Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2 1 0

S = Z6S = Z6

/p/p

%p%p

%p%p %p%p /p/p

/p/p

2 4 3 01 5

Leaves

Internal

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2
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Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2 1 0

S = Z6S = Z6

/p/p

%p%p

%p%p %p%p /p/p

/p/p

2 4 3 01 5

Leaves

Internal

DivisorsDivisors d1 = 6d1 = 6 d2 = 3d2 = 3 d3 = 2d3 = 2 d4 = 1d4 = 1

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2
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Example recursion tree where S = Zͳ

0 1 2 3 4 5

1 2 4 5 0 1

1 5 1 2 1 0

S = Z6S = Z6

/p/p

%p%p

%p%p %p%p /p/p

/p/p

2 4 3 01 5

⊕⊕
⊕⊕

⊕⊕

Leaves

Internal

DivisorsDivisors d1 = 6d1 = 6 d2 = 3d2 = 3 d3 = 2d3 = 2 d4 = 1d4 = 1

Levels

O(logm)O(logm)

Total size σ1(m) = O(m log logm)σ1(m) = O(m log logm)

p = 3, d = 6p = 3, d = 6

p = 2, d = 2p = 2, d = 2

σi(m) =
∑

d|m di.
Ͳʹ



Run time analysis: Leaves

d1d1 d2d2 d3d3

. . .. . .

dkdk

S1S1 S2S2 S3S3 SkSk

Compute Σ(Si) for each i. |Si| = ni. di ≤ m/i is the ith largest divisor
of m.

Õ(
∑

i

min(
√
nidi,d

Ͳ/ͱ
i ))

=Õ(
∑

i

min(
√
nim/i, (m/i)Ͳ/ͱ))

=Õ(min(
√
nm,mͲ/ͱ))

Ͳ͵



Run time analysis: Internal nodes

⊕⊕

dd

dd d/pd/p

• There are O(logm) levels.
• Each level, the time spent on ⊕ is
Õ(

∑
d|m d) = Õ(σͮ(m)) = Õ(m).

• The total running time over internal nodes are Õ(m).

ͲͶ



Run time analysis

Theorem
All subset sums in Zm can be solved in Õ(min(

√
nm,mͲ/ͱ)).

ͳͭ



Open Problems



Open Problems: Deterministic near linear time algorithm

Is there a deterministic Õ(t) time algorithm for the subset sum
problem matching its conditional lower bound?

ͳͮ



Open Problems: Output sensitive subset sum

Let k = |Σ(S) ∩ [t]|. Assume k≪ t.

• Known: subset sum in O(nk) time use Bellman’s DP algorithm.
• Can we obtain an algorithm with Õ(

√
nk) running time?

ͳͯ



Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f m m

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ͮͰ])

• f m O m if m is prime.

• f m mͮ o ͮ .

Theorem ([Koiliaris & 9u ‘ͮʹ])

f m ͭ m O ͮ m logm mͮ o ͮ

Conjecture: f m O m
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Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f(m, ℓ) ≥
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ℓ

⌉

Upper Bound:
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• f m O m if m is prime.

• f m mͮ o ͮ .
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Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f(m, ℓ) ≥
⌈m

ℓ

⌉

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ͮͰ])

• f(m, ℓ) = O(mℓ ) if m is prime.

• f(m, ℓ) = mͮ+o(ͮ)
√
ℓ
.

Theorem ([Koiliaris & 9u ‘ͮʹ])

f m ͭ m O ͮ m logm mͮ o ͮ

Conjecture: f m O m
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Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f(m, ℓ) ≥
⌈m

ℓ

⌉

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ͮͰ])

• f(m, ℓ) = O(mℓ ) if m is prime.

• f(m, ℓ) = mͮ+o(ͮ)
√
ℓ
.

Theorem ([Koiliaris & 9u ‘ͮʹ])

f(m, ℓ) = σͭ(m) + O(σͮ(m) logm/ℓ) = mͮ+o(ͮ)

ℓ

Conjecture: f m O m
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Open Problems: Covering Zm by segments of length ℓ

Let f(m, ℓ) be the minimum number of segments of length ℓ required
to cover Zm.

Lower Bound: f(m, ℓ) ≥
⌈m

ℓ

⌉

Upper Bound:

Theorem ([Chen, Shparlinski & 4interhof ‘ͮͰ])

• f(m, ℓ) = O(mℓ ) if m is prime.

• f(m, ℓ) = mͮ+o(ͮ)
√
ℓ
.

Theorem ([Koiliaris & 9u ‘ͮʹ])

f(m, ℓ) = σͭ(m) + O(σͮ(m) logm/ℓ) = mͮ+o(ͮ)

ℓ

Conjecture: f(m, ℓ) = O(mℓ )

ͳͰ



Thank you
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