A polynomial time algorithm for submodular 4-partition

Chao Xu
Joint work: Tsuyoshi Hirayama, Yuhao Liu, Kazuhisa Makino and Ke Shi
January 23, 2023
UESTC

Submodular k-partition

- A function $f: 2^{V} \rightarrow \mathbb{R}$ is submodular if $f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$ for all $A, B \subseteq V$.

Submodular k-partition

- A function $f: 2^{V} \rightarrow \mathbb{R}$ is submodular if $f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$ for all $A, B \subseteq V$.
- V_{1}, \ldots, V_{k} is k-partition of V if they are non-empty, pairwise disjoint, and $V=\bigcup_{i=1}^{k} V_{i}$.

Submodular k-partition

- A function $f: 2^{V} \rightarrow \mathbb{R}$ is submodular if $f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$ for all $A, B \subseteq V$.
- V_{1}, \ldots, V_{k} is k-partition of V if they are non-empty, pairwise disjoint, and $V=\bigcup_{i=1}^{k} V_{i}$.
- A k-partition \mathcal{X} is minimum if $\sum_{X \in \mathcal{X}} f(X)$ is minimized.
- Submodular k-partition problem: Find a minimum k-partition.

Submodular k-partition

- A function $f: 2^{V} \rightarrow \mathbb{R}$ is submodular if $f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$ for all $A, B \subseteq V$.
- V_{1}, \ldots, V_{k} is k-partition of V if they are non-empty, pairwise disjoint, and $V=\bigcup_{i=1}^{k} V_{i}$.
- A k-partition \mathcal{X} is minimum if $\sum_{X \in \mathcal{X}} f(X)$ is minimized.
- Submodular k-partition problem: Find a minimum k-partition.

Goal: A polynomial time algorithm for fixed k.

Examples: Min k-cut in graphs

$G=(V, E)$ is a graph.

- F is a k-cut if $G-F$ has at least k components.
- c is the cut function, $c(S)$ is number of edges with 1 vertex in S and one outside of S.
c is submodular.
- min- k-cut $=\boldsymbol{m i n}$ submodular k-partition of c.

Examples: Min k-cut in hypergraphs

- min k-partition: min submodular k-partition of the cut function c.
- min k-cut: same definition as graph minimum k-cut.
- hypergraph k-partition \neq hypergraph k-cut!
- Let $h(e) \in e$ be a designated vertex of e. $f(S)$ is number of edges with $h(e) \in S$ and some vertex of e outside of S.
- $\boldsymbol{\operatorname { m i n }}-k$-cut $=\boldsymbol{\operatorname { m i n }}$ submodular k-partition of f.

Previous works on GRAPH k-cut

- Fix a partition class: $n^{\Theta\left(k^{2}\right)}$ [Goldschmidt-Hochbaum 94].
- Randomized contraction: $\tilde{O}\left(n^{2(k-1)}\right)$ [Karger-Stein 96].
- Divide and conquer: $O\left(n^{(4+o(1)) k}\right)$ [Kamidoi-Yoshida-Nagamochi 07], $O\left(n^{(4-o(1)) k}\right)$ [Xiao 08].
- Tree packing: $\tilde{O}\left(n^{2 k}\right)$ [Thorup 08], $\tilde{O}\left(n^{2 k-1}\right)$ [Chekuri-Quanrud-X 20]
- Optimum randomized contraction $\tilde{O}\left(n^{k}\right)$ [Gupta-Harris-Lee-Li 20].

Previous works on HYPERGRAPH k-cut

Polynomial time algorithms:

- $k=2$
- Vertex ordering: [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00].
- Randomized contraction: [Ghaffari-Karger-Panigrahi 17].
- $k=3$: Deterministic contraction [Xiao 08].
- Constant rank: Hypertree packing [Fukunaga 10].
- General k
- randomized algorithm [Chandrasekaran-X-Yu 18, Fox-Panigrahi-Zhang 19].
- deterministic algorithm [Chekuri-Chandrasekaran 20]

Previous works on Submodular k-partition

- $k=2$: Reduces to symmetric submodular minimization. i.e. $g(S)=f(S)+f(V \backslash S)$.
- $k=3$: Generalizes hypergraph 3-cut algorithm [Okumoto-Fukunaga-Nagamochi 10]
- Open for $k \geq 4$.

Our Result

$\tau(n)$ time to minimize a submodular function on n vertices.

Theorem

There exists an $O\left(n^{6} \tau(n)\right)$ time algorithm for submodular 4-partition.
Generalizes the deterministic contraction approach for submodular 3-partition.

Warmup: Submodular 3-partition

Definition (Noncrossing) A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is a component of \mathcal{X} that is contained in some component of \mathcal{Y}.

Warmup: Submodular 3-partition

Definition (Noncrossing) A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is a component of \mathcal{X} that is contained in some component of \mathcal{Y}.
Theorem
Every min-2-partition is noncrossing with some min-3-partition.

Warmup: Submodular 3-partition

Definition (Noncrossing) A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is a component of \mathcal{X} that is contained in some component of \mathcal{Y}.
Theorem
Every min-2-partition is noncrossing with some min-3-partition.
Simple case analysis.

Warmup: Submodular 3-partition

Definition (Noncrossing)
A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is a component of \mathcal{X} that is contained in some component of \mathcal{Y}.

Theorem

Every min-2-partition is noncrossing with some min-3-partition.
Simple case analysis. Hints a contraction algorithm.

Warmup: Submodular 3-partition

A partition is called h-size if all its components contain at least h elements.

A partition is called non-trivial if at least two partition classes has size at least 2.

Trivial

Combinatorial Structure

Theorem

Let f be a submodular function on least 7 vertices. If all minimum 3-partition are 2-size, then every minimum non-trivial 2-partition is noncrossing with some minimum 3-partition.

Combinatorial Structure

Theorem

Let f be a submodular function on least 7 vertices. If all minimum 3-partition are 2-size, then every minimum non-trivial 2-partition is noncrossing with some minimum 3-partition.

```
Min3Partition \((f)\) :
    \(V \leftarrow \operatorname{domain}(f)\)
    if \(|V| \leq 6\)
        return the optimum by brute force
    for \(X \in\binom{V}{1}\)
        add candidate \(\{X\} \cup \operatorname{Min} 2 \operatorname{Partition}(f x)\)
    \(\mathcal{X} \leftarrow \operatorname{MinNonTrivial2Partition}(f)\)
    for \(X \in \mathcal{X}\)
        add candidate \(\operatorname{Min} 3\) Partition \((f / x)\)
    return minimum over all candidates
```


Running Time Analysis

$$
\begin{aligned}
& \frac{\operatorname{Min} 3 P a r t i t i o n(~}{}(f) \text { : } \\
& \text { if }|V| \leq 6 \\
& \text { return the optimum by brute force } \\
& \text { for } X \in\binom{V}{1} \\
& \text { add candidate }\{X\} \cup \operatorname{Min} 2 \operatorname{Partition}(f x) \\
& \mathcal{X} \leftarrow \operatorname{MinNonTrivial2Partition}(f) \\
& \text { for } X \in \mathcal{X} \\
& \text { add candidate Min3Partition }\left(f_{/ X}\right) \\
& \text { return minimum over all candidates }
\end{aligned}
$$

$$
T(n)=\max _{\substack{a+b=n \\ 1 \leq a \leq b \leq n-2}} T(a+1)+T(b+1)+O\left(n^{c}\right)=O\left(n^{c+1}\right) .
$$

Submodular 4-partition

Theorem
Every min-3-partition is noncrossing with a min-4-partition.

Submodular 4-partition

Theorem

Every min-3-partition is noncrossing with a min-4-partition.
Noncrossing is insufficient for polynomial time algorithm for 4-partitions.
Let $\mathcal{X}=\left\{X_{1}, X_{2}, X_{3}\right\}$ such that $\left|X_{1}\right|=n-4,\left|X_{2}\right|,\left|X_{3}\right|=2$.
Same algorithm gives us running time.

$$
T(n) \geq 2 T(n-1)+O\left(n^{c}\right)
$$

$T(n)$ is exponential!

Compatible

Definition (Noncrossing)

A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is 1 component of \mathcal{X} that is contained in some component of \mathcal{Y}.

Compatible

Definition (Noncrossing)

A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is 1 component of \mathcal{X} that is contained in some component of \mathcal{Y}.

Definition (Compatible)
A partition \mathcal{X} is compatible with partition \mathcal{Y}, if there are $|\mathcal{X}|-1$ components of \mathcal{X} that each is contained inside some component of \mathcal{Y}.

Noncrossing $=$ Compatible for 2-partitions

Compatible

Compatible allows us to contract $|\mathcal{X}|-1$ sets at the same time.
Non-trivial make sure each contraction of $|\mathcal{X}|-1$ sets decreases the number of vertices.

$$
T(n)=\max _{\substack{\sum_{i=1}^{k} a_{i}=n \\ 1 \leq a_{i} \leq n-k}} \sum_{i=1}^{k} T\left(a_{i}+k-1\right)+O\left(n^{c}\right)=O\left(n^{c+1}\right) .
$$

Combinatorial Structure

Theorem (Compatibility of 2 -partition and 3 -partition)
Let f be a submodular function on at least $(2 \times 3)+1$ vertices. If all minimum 3 -partition are 2 -size, then every minimum non-trivial 2 -partition is compatible with some minimum 3-partition.

Combinatorial Structure

Theorem (Compatibility of 2-partition and 3-partition)
Let f be a submodular function on at least $(2 \times 3)+1$ vertices. If all minimum 3 -partition are 2 -size, then every minimum non-trivial 2 -partition is compatible with some minimum 3-partition.

Theorem (Compatibility of 3-partition and 4-partition)
Let f be a submodular function on at least $(3 \times 4)+1$ vertices. If all minimum 4 -partition are 3 -size, then every minimum non-trivial 3 -partition is compatible with some minimum 4-partition.

Proof.

Case Analysis. Lot of cases.

Algorithm for submodular 4-partition

```
\(\frac{\text { Min4Partition }(f) \text { : }}{V \leftarrow \operatorname{domain}(f)}\)
    if \(|V| \leq 12\)
            return the optimum by brute force
    for \(X \in\binom{V}{1} \cup\binom{V}{2}\)
        add candidate \(\{X\} \cup \operatorname{Min} 3\) Partition \((f x)\)
    \(\mathcal{X} \leftarrow \operatorname{MinNonTrivial3Partition}(f)\)
    for \(\{A, B\} \in\binom{\mathcal{X}}{2}\)
        add candidate Min4Partition \(\left(\left(f_{/ A}\right) / B\right)\)
    return minimum over all candidates
```

Find a minimum non-trivial 3-partition is in P.

Compatibility for larger k?

Conjecture

Every minimum k - 1 -partition is compatible with some minimum k-partition.

Compatibility for larger k?

Conjecture

Every minimum k - 1 -partition is compatible with some minimum k-partition.
FALSE! Counterexample in graphs for $k=5$!

Open problems

- Algorithmic: Polynomial time submodular k-partition algorithm for $k \geq 5$?
- Combinatorial:
- Every min k - 1-partition is noncrossing with a min k-partition? (it is true for $k=5!$)
- Every min k - 1-partition has at least t_{k} parts that each is a subset of some part in a min k-partition, how large can t_{k} be?

Thank You!

