A polynomial time algorithm for submodular 4-partition

Chao Xu

Joint work: Tsuyoshi Hirayama, Yuhao Liu, Kazuhisa Makino and Ke Shi January 23, 2023

UESTC

• A function $f: 2^V \to \mathbb{R}$ is submodular if $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ for all $A, B \subseteq V$.

- A function $f: 2^V \to \mathbb{R}$ is submodular if $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ for all $A, B \subseteq V$.
- V_1, \ldots, V_k is k-partition of V if they are non-empty, pairwise disjoint, and $V = \bigcup_{i=1}^k V_i$.

- A function $f: 2^V \to \mathbb{R}$ is submodular if $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ for all $A, B \subseteq V$.
- V_1, \ldots, V_k is k-partition of V if they are non-empty, pairwise disjoint, and $V = \bigcup_{i=1}^k V_i$.
- A k-partition \mathcal{X} is minimum if $\sum_{X \in \mathcal{X}} f(X)$ is minimized.
- Submodular *k*-partition problem: Find a minimum *k*-partition.

- A function $f: 2^V \to \mathbb{R}$ is submodular if $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ for all $A, B \subseteq V$.
- V_1, \ldots, V_k is k-partition of V if they are non-empty, pairwise disjoint, and $V = \bigcup_{i=1}^k V_i$.
- A k-partition \mathcal{X} is minimum if $\sum_{X \in \mathcal{X}} f(X)$ is minimized.
- Submodular *k*-partition problem: Find a minimum *k*-partition.

Goal: A polynomial time algorithm for fixed k.

Examples: Min *k*-cut in graphs

G = (V, E) is a graph.

- *F* is a *k*-cut if *G F* has at least *k* components.
- c is the cut function, c(S) is number of edges with 1 vertex in S and one outside of S.

c is submodular.

• min-k-cut = min submodular k-partition of c.

Examples: Min *k*-cut in hypergraphs

- min *k*-partition: min submodular *k*-partition of the cut function *c*.
- min k-cut: same definition as graph minimum k-cut.
- hypergraph k-partition ≠ hypergraph k-cut!
- Let h(e) ∈ e be a designated vertex of e.
 f(S) is number of edges with h(e) ∈ S and some vertex of e outside of S.
- min-k-cut = min submodular k-partition of f.

- Fix a partition class: $n^{\Theta(k^2)}$ [Goldschmidt-Hochbaum 94].
- Randomized contraction: $\tilde{O}(n^{2(k-1)})$ [Karger-Stein 96].
- Divide and conquer: O(n^{(4+o(1))k}) [Kamidoi-Yoshida-Nagamochi 07], O(n^{(4-o(1))k}) [Xiao 08].
- Tree packing: $\tilde{O}(n^{2k})$ [Thorup 08], $\tilde{O}(n^{2k-1})$ [Chekuri-Quanrud-X 20]
- Optimum randomized contraction $\tilde{O}(n^k)$ [Gupta-Harris-Lee-Li 20].

Polynomial time algorithms:

- *k* = 2
 - Vertex ordering: [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00].
 - Randomized contraction: [Ghaffari-Karger-Panigrahi 17].
- k = 3: Deterministic contraction [Xiao 08].
- Constant rank: Hypertree packing [Fukunaga 10].
- General k
 - randomized algorithm [Chandrasekaran-X-Yu 18, Fox-Panigrahi-Zhang 19].
 - deterministic algorithm [Chekuri-Chandrasekaran 20]

- k = 2: Reduces to symmetric submodular minimization. i.e. $g(S) = f(S) + f(V \setminus S)$.
- k = 3: Generalizes hypergraph 3-cut algorithm [Okumoto-Fukunaga-Nagamochi 10]
- Open for $k \geq 4$.

 $\tau(n)$ time to minimize a submodular function on *n* vertices.

Theorem

There exists an $O(n^6\tau(n))$ time algorithm for submodular 4-partition.

Generalizes the deterministic contraction approach for submodular 3-partition.

Definition (Noncrossing) A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is a component of \mathcal{X} that is contained in some component of \mathcal{Y} .

Definition (Noncrossing) A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is a component of \mathcal{X} that is contained in some component of \mathcal{Y} .

Theorem Every min-2-partition is noncrossing with some min-3-partition.

Definition (Noncrossing) A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is a component of \mathcal{X} that is contained in some component of \mathcal{Y} .

Theorem Every min-2-partition is noncrossing with some min-3-partition. Simple case analysis.

Definition (Noncrossing) A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is a component of \mathcal{X} that is contained in some component of \mathcal{Y} .

Theorem Every min-2-partition is noncrossing with some min-3-partition.

Simple case analysis. Hints a contraction algorithm.

A partition is called h-size if all its components contain at least h elements.

2-size

A partition is called **non-trivial** if at least two partition classes has size at least 2.

Theorem

Let f be a submodular function on at least 7 vertices. If all minimum 3-partition are 2-size, then every minimum non-trivial 2-partition is noncrossing with some minimum 3-partition.

Theorem

Let f be a submodular function on at least 7 vertices. If all minimum 3-partition are 2-size, then every minimum non-trivial 2-partition is noncrossing with some minimum 3-partition.

MIN3PARTITION(f): $V \leftarrow domain(f)$ if |V| < 6return the optimum by brute force for $X \in \binom{V}{1}$ add candidate $\{X\} \cup MIN2PARTITION(f_X)$ $\mathcal{X} \leftarrow \text{MINNONTRIVIAL2PARTITION}(f)$ for $X \in \mathcal{X}$ add candidate MIN3PARTITION(f_{X}) return minimum over all candidates

MIN3PARTITION(f): $V \leftarrow domain(f)$ if |V| < 6return the optimum by brute force for $X \in \binom{V}{1}$ add candidate $\{X\} \cup MIN2PARTITION(f_X)$ $\mathcal{X} \leftarrow \text{MinNonTrivial2Partition}(f)$ for $X \in \mathcal{X}$ add candidate MIN3PARTITION($f_{/X}$) return minimum over all candidates

$$T(n) = \max_{\substack{a+b=n\\1\le a\le b\le n-2}} T(a+1) + T(b+1) + O(n^c) = O(n^{c+1}).$$

Theorem Every min-3-partition is noncrossing with a min-4-partition.

Theorem Every min-3-partition is noncrossing with a min-4-partition.

Noncrossing is insufficient for polynomial time algorithm for 4-partitions.

Let
$$\mathcal{X} = \{X_1, X_2, X_3\}$$
 such that $|X_1| = n - 4$, $|X_2|, |X_3| = 2$.

Same algorithm gives us running time.

$$T(n) \geq 2T(n-1) + O(n^c)$$

T(n) is exponential!

Definition (Noncrossing) A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is 1 component of \mathcal{X} that is contained in some component of \mathcal{Y} .

Definition (Noncrossing)

A partition \mathcal{X} is noncrossing with a partition \mathcal{Y} if there is 1 component of \mathcal{X} that is contained in some component of \mathcal{Y} .

Definition (Compatible)

A partition \mathcal{X} is *compatible* with partition \mathcal{Y} , if there are $|\mathcal{X}| - 1$ components of \mathcal{X} that each is contained inside some component of \mathcal{Y} .

Noncrossing = Compatible for 2-partitions

Compatible

Theorem (Compatibility of 2-partition and 3-partition)

Let f be a submodular function on at least $(2 \times 3) + 1$ vertices. If all minimum 3-partition are 2-size, then every minimum non-trivial 2-partition is compatible with some minimum 3-partition.

Theorem (Compatibility of 2-partition and 3-partition)

Let f be a submodular function on at least $(2 \times 3) + 1$ vertices. If all minimum 3-partition are 2-size, then every minimum non-trivial 2-partition is compatible with some minimum 3-partition.

Theorem (Compatibility of 3-partition and 4-partition) Let f be a submodular function on at least $(3 \times 4) + 1$ vertices. If all minimum 4-partition are 3-size, then every minimum non-trivial 3-partition is compatible with some minimum 4-partition.

Proof. Case Analysis. Lot of cases. MIN4PARTITION(f): $V \leftarrow domain(f)$ if |V| < 12return the optimum by brute force for $X \in \binom{V}{1} \bigcup \binom{V}{2}$ add candidate $\{X\} \cup MIN3PARTITION(f_X)$ $\mathcal{X} \leftarrow \text{MinNonTrivial3Partition}(f)$ for $\{A, B\} \in \binom{\mathcal{X}}{2}$ add candidate MIN4PARTITION($(f_A)_B$) return minimum over all candidates

Find a minimum non-trivial 3-partition is in P.

Conjecture Every minimum k - 1-partition is compatible with some minimum k-partition.

Conjecture Every minimum k - 1-partition is compatible with some minimum k-partition.

FALSE! Counterexample in graphs for k = 5!

- Algorithmic: Polynomial time submodular k-partition algorithm for $k \ge 5$?
- Combinatorial:
 - Every min *k* 1-partition is **noncrossing** with a min *k*-partition? (it is true for *k* = 5!)
 - Every min k 1-partition has at least t_k parts that each is a subset of some part in a min k-partition, how large can t_k be?

Thank You!