
A polynomial time algorithm for submodular 4-partition

Chao Xu

Joint work: Tsuyoshi Hirayama, Yuhao Liu, Kazuhisa Makino and Ke Shi

January 23, 2023

UESTC

1



Submodular k-partition

• A function f : 2V → R is submodular if f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for

all A,B ⊆ V .

• V1, . . . ,Vk is k-partition of V if they are non-empty, pairwise disjoint, and

V =
⋃k

i=1 Vi .

• A k-partition X is minimum if
∑

X∈X f (X ) is minimized.

• Submodular k-partition problem: Find a minimum k-partition.

Goal: A polynomial time algorithm for fixed k .

2



Submodular k-partition

• A function f : 2V → R is submodular if f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for

all A,B ⊆ V .

• V1, . . . ,Vk is k-partition of V if they are non-empty, pairwise disjoint, and

V =
⋃k

i=1 Vi .

• A k-partition X is minimum if
∑

X∈X f (X ) is minimized.

• Submodular k-partition problem: Find a minimum k-partition.

Goal: A polynomial time algorithm for fixed k .

2



Submodular k-partition

• A function f : 2V → R is submodular if f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for

all A,B ⊆ V .

• V1, . . . ,Vk is k-partition of V if they are non-empty, pairwise disjoint, and

V =
⋃k

i=1 Vi .

• A k-partition X is minimum if
∑

X∈X f (X ) is minimized.

• Submodular k-partition problem: Find a minimum k-partition.

Goal: A polynomial time algorithm for fixed k .

2



Submodular k-partition

• A function f : 2V → R is submodular if f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for

all A,B ⊆ V .

• V1, . . . ,Vk is k-partition of V if they are non-empty, pairwise disjoint, and

V =
⋃k

i=1 Vi .

• A k-partition X is minimum if
∑

X∈X f (X ) is minimized.

• Submodular k-partition problem: Find a minimum k-partition.

Goal: A polynomial time algorithm for fixed k .

2



Examples: Min k-cut in graphs

G = (V ,E ) is a graph.

• F is a k-cut if G − F has at least k

components.

• c is the cut function, c(S) is number of

edges with 1 vertex in S and one outside

of S .

c is submodular.

• min-k-cut = min submodular

k-partition of c.

3



Examples: Min k-cut in hypergraphs

SS

• min k-partition: min submodular

k-partition of the cut function c .

• min k-cut: same definition as graph

minimum k-cut.

• hypergraph k-partition 6= hypergraph

k-cut!

• Let h(e) ∈ e be a designated vertex of e.

f (S) is number of edges with h(e) ∈ S

and some vertex of e outside of S .

• min-k-cut = min submodular

k-partition of f .

4



Previous works on GRAPH k-cut

• Fix a partition class: nΘ(k2) [Goldschmidt-Hochbaum 94].

• Randomized contraction: Õ(n2(k−1)) [Karger-Stein 96].

• Divide and conquer: O(n(4+o(1))k) [Kamidoi-Yoshida-Nagamochi 07], O(n(4−o(1))k)

[Xiao 08].

• Tree packing: Õ(n2k) [Thorup 08], Õ(n2k−1) [Chekuri-Quanrud-X 20]

• Optimum randomized contraction Õ(nk) [Gupta-Harris-Lee-Li 20].

5



Previous works on HYPERGRAPH k-cut

Polynomial time algorithms:

• k = 2

• Vertex ordering: [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00].

• Randomized contraction: [Ghaffari-Karger-Panigrahi 17].

• k = 3: Deterministic contraction [Xiao 08].

• Constant rank: Hypertree packing [Fukunaga 10].

• General k

• randomized algorithm [Chandrasekaran-X-Yu 18, Fox-Panigrahi-Zhang 19].

• deterministic algorithm [Chekuri-Chandrasekaran 20]

6



Previous works on Submodular k-partition

• k = 2: Reduces to symmetric submodular minimization. i.e.

g(S) = f (S) + f (V \ S).

• k = 3: Generalizes hypergraph 3-cut algorithm [Okumoto-Fukunaga-Nagamochi 10]

• Open for k ≥ 4.

7



Our Result

τ(n) time to minimize a submodular function on n vertices.

Theorem
There exists an O(n6τ(n)) time algorithm for submodular 4-partition.

Generalizes the deterministic contraction approach for submodular 3-partition.

8



Warmup: Submodular 3-partition

Definition (Noncrossing)
A partition X is noncrossing with a

partition Y if there is a component of

X that is contained in some

component of Y.

Theorem
Every min-2-partition is noncrossing

with some min-3-partition.

Simple case analysis. Hints a contrac-

tion algorithm.

9



Warmup: Submodular 3-partition

Definition (Noncrossing)
A partition X is noncrossing with a

partition Y if there is a component of

X that is contained in some

component of Y.

Theorem
Every min-2-partition is noncrossing

with some min-3-partition.

Simple case analysis. Hints a contrac-

tion algorithm.

9



Warmup: Submodular 3-partition

Definition (Noncrossing)
A partition X is noncrossing with a

partition Y if there is a component of

X that is contained in some

component of Y.

Theorem
Every min-2-partition is noncrossing

with some min-3-partition.

Simple case analysis.

Hints a contrac-

tion algorithm.

9



Warmup: Submodular 3-partition

Definition (Noncrossing)
A partition X is noncrossing with a

partition Y if there is a component of

X that is contained in some

component of Y.

Theorem
Every min-2-partition is noncrossing

with some min-3-partition.

Simple case analysis. Hints a contrac-

tion algorithm.

9



Warmup: Submodular 3-partition

A partition is called h-size if all its com-

ponents contain at least h elements.

2-size

A partition is called non-trivial if at

least two partition classes has size at

least 2.

Trivial

10



Combinatorial Structure

Theorem
Let f be a submodular function on at least 7 vertices. If all minimum 3-partition are

2-size, then every minimum non-trivial 2-partition is noncrossing with some minimum

3-partition.

Min3Partition(f ):

V ← domain(f )

if |V | ≤ 6

return the optimum by brute force

for X ∈
(
V
1

)
add candidate {X} ∪Min2Partition(f\X )

X ←MinNonTrivial2Partition(f )

for X ∈ X
add candidate Min3Partition(f/X )

return minimum over all candidates

11



Combinatorial Structure

Theorem
Let f be a submodular function on at least 7 vertices. If all minimum 3-partition are

2-size, then every minimum non-trivial 2-partition is noncrossing with some minimum

3-partition.

Min3Partition(f ):

V ← domain(f )

if |V | ≤ 6

return the optimum by brute force

for X ∈
(
V
1

)
add candidate {X} ∪Min2Partition(f\X )

X ←MinNonTrivial2Partition(f )

for X ∈ X
add candidate Min3Partition(f/X )

return minimum over all candidates
11



Running Time Analysis

Min3Partition(f ):

V ← domain(f )

if |V | ≤ 6

return the optimum by brute force

for X ∈
(
V
1

)
add candidate {X} ∪Min2Partition(f\X )

X ←MinNonTrivial2Partition(f )

for X ∈ X
add candidate Min3Partition(f/X )

return minimum over all candidates

T (n) = max
a+b=n

1≤a≤b≤n−2

T (a + 1) + T (b + 1) + O(nc) = O(nc+1).

12



Submodular 4-partition

Theorem
Every min-3-partition is noncrossing with a min-4-partition.

Noncrossing is insufficient for polynomial time algorithm for 4-partitions.

Let X = {X1,X2,X3} such that |X1| = n − 4, |X2|, |X3| = 2.

Same algorithm gives us running time.

T (n) ≥ 2T (n − 1) + O(nc)

T (n) is exponential!

13



Submodular 4-partition

Theorem
Every min-3-partition is noncrossing with a min-4-partition.

Noncrossing is insufficient for polynomial time algorithm for 4-partitions.

Let X = {X1,X2,X3} such that |X1| = n − 4, |X2|, |X3| = 2.

Same algorithm gives us running time.

T (n) ≥ 2T (n − 1) + O(nc)

T (n) is exponential!

13



Compatible

Definition (Noncrossing)
A partition X is noncrossing with a partition Y if there is 1 component of X that is

contained in some component of Y.

Definition (Compatible)
A partition X is compatible with partition Y, if there are |X | − 1 components of X
that each is contained inside some component of Y.

Noncrossing = Compatible for 2-partitions

14



Compatible

Definition (Noncrossing)
A partition X is noncrossing with a partition Y if there is 1 component of X that is

contained in some component of Y.

Definition (Compatible)
A partition X is compatible with partition Y, if there are |X | − 1 components of X
that each is contained inside some component of Y.

Noncrossing = Compatible for 2-partitions

14



Compatible

Compatible allows us to contract |X | − 1 sets

at the same time.

Non-trivial make sure each contraction of

|X | − 1 sets decreases the number of vertices.

T (n) = max∑k
i=1 ai=n

1≤ai≤n−k

k∑
i=1

T (ai+k−1)+O(nc) = O(nc+1).

15



Combinatorial Structure

Theorem (Compatibility of 2-partition and 3-partition)
Let f be a submodular function on at least (2× 3) + 1 vertices. If all minimum

3-partition are 2-size, then every minimum non-trivial 2-partition is compatible with

some minimum 3-partition.

Theorem (Compatibility of 3-partition and 4-partition)
Let f be a submodular function on at least (3× 4) + 1 vertices. If all minimum

4-partition are 3-size, then every minimum non-trivial 3-partition is compatible with

some minimum 4-partition.

Proof.
Case Analysis. Lot of cases.

16



Combinatorial Structure

Theorem (Compatibility of 2-partition and 3-partition)
Let f be a submodular function on at least (2× 3) + 1 vertices. If all minimum

3-partition are 2-size, then every minimum non-trivial 2-partition is compatible with

some minimum 3-partition.

Theorem (Compatibility of 3-partition and 4-partition)
Let f be a submodular function on at least (3× 4) + 1 vertices. If all minimum

4-partition are 3-size, then every minimum non-trivial 3-partition is compatible with

some minimum 4-partition.

Proof.
Case Analysis. Lot of cases.

16



Algorithm for submodular 4-partition

Min4Partition(f ):

V ← domain(f )

if |V | ≤ 12

return the optimum by brute force

for X ∈
(
V
1

)⋃ (V
2

)
add candidate {X} ∪Min3Partition(f\X )

X ←MinNonTrivial3Partition(f )

for {A,B} ∈
(X

2

)
add candidate Min4Partition((f/A)/B)

return minimum over all candidates

Find a minimum non-trivial 3-partition is in P.

17



Compatibility for larger k?

Conjecture
Every minimum k − 1-partition is compatible with some minimum k-partition.

FALSE! Counterexample in graphs for k = 5!

18



Compatibility for larger k?

Conjecture
Every minimum k − 1-partition is compatible with some minimum k-partition.

FALSE! Counterexample in graphs for k = 5!

18



Open problems

• Algorithmic: Polynomial time submodular k-partition algorithm for k ≥ 5?

• Combinatorial:

• Every min k − 1-partition is noncrossing with a min k-partition? (it is true for

k = 5!)

• Every min k − 1-partition has at least tk parts that each is a subset of some part in a

min k-partition, how large can tk be?

19



Thank You!

20


