A Polynomial Time Algorithm to Minimize
Total Travel Time in k-Depot
Storage/Retrieval System

Amir Gharehgozli, Chao Xu, Wenda Zhang
Aug 24, 2018

A warehouse

An automated warehouse with input depots and output depots. It
has to complete input(storage) and output(retrieval) requests.

Figure 1: Demag V-type crane machine. Source: demagcranes.com

demagcranes.com

The storage and retrial machine

e The machine start at some depot.
e The machine can hold at most one item.

e The machine can pick up an item from any input depot, and
drop off the item at a input request location.

e The machine can pick up an item from a output request
location, and drop off the item at any output depot.

e The machine must return to the original depot.

. ‘ . Input depot

O Output depot

Input depot
Output depot

Input request

ce OO0

Output request

D ‘ . Input depot
O Output depot
° { Input request
° (o] o Output request
(o) D Machine
o

Input depot
Output depot

Input request
Output request
Machine

(o}
*Dooo.

Machine route (full)

Input depot
Output depot

Input request
Output request
Machine

Machine route (full)

lYeeoe®

Machine route (empty)

lYeeoe®

Input depot
Output depot

Input request
Output request
Machine

Machine route (full)

Machine route (empty)

Input depot
Output depot

Input request
Output request
Machine

Machine route (full)

lYeeoe®

Machine route (empty)

Input depot
Output depot

Input request
Output request
Machine

Machine route (full)

lYeeoe®

Machine route (empty)

Input depot
Output depot

Input request
Output request
Machine

Machine route (full)

lYeeoe®

Machine route (empty)

Input depot
Output depot

Input request
Output request
Machine

Machine route (full)

lYeeoe®

Machine route (empty)

Input depot
Output depot

Input request
Output request
Machine

Machine route (full)

lYeeoe®

Machine route (empty)

Input depot
Output depot

Input request
Output request
Machine

Machine route (full)

lYeeoe®

Machine route (empty)

Input depot
Output depot

Input request
Output request
Machine

Machine route (full)

lYeeoe®

Machine route (empty)

At most 2 request can be completed per depot to depot trip.

e input depot — input request— output request— output depot
e input depot— input request— arbitrary depot
e arbitrary depot— output request— output depot

e output depot — input depot

Formalizing the problem: The input

Input depots Dy, output depots Do, D = D; U Do. |D| = k.

Input request Ry, output request Rp, R = Ry U Rp. |R| = n.
e V = DUR, the set of vertices.

dist: V x V — R, a asymmetric metric.

Model as a walk on a graph

For input Dy, Do, R, Ro, ¢, we construct the following weighted
directed graph G on vertices V.

e For d,d" € D, there is an edge (d, d").

e For v € V, u € Ry, there is an edge (u, v).

e Forve V, ue Rp, there is an edge (v, u).
e For v e R, d € Dy, there is an edge (d, v).
e For v € Rp, d € Do, there is an edge (v, d).

The cost of an edge c(u, v) = dist(u, v). Such graph G is called a

warehouse network.

Warehouse network, high level view

The abstract problem

Problem: k-depot warehouse tour
Input: A warehouse network with k depot vertices.

Output: A minimum cost closed walk that goes through every

vertex at least once.

The abstract problem

Problem: k-depot warehouse tour
Input: A warehouse network with k depot vertices.

Output: A minimum cost closed walk that goes through every

vertex at least once.

Note: we assume in the optimal solution, all k depot has to be

visited.

The abstract problem

Problem: k-depot warehouse tour
Input: A warehouse network with k depot vertices.

Output: A minimum cost closed walk that goes through every

vertex at least once.

Note: we assume in the optimal solution, all k depot has to be

visited.

Closely related to TSP.

The abstract problem

Problem: k-depot warehouse tour
Input: A warehouse network with k depot vertices.

Output: A minimum cost closed walk that goes through every

vertex at least once.

Note: we assume in the optimal solution, all k depot has to be

visited.
Closely related to TSP.

Observation: there is an optimal solution that goes through each

vertex in R exactly once, because dist is a metric.

Previous results

A regular depot is a pair of input depot d and output depot d’
with dist(d, d") = 0.

[Gharehgozli, Yu, Zhang, de Koster '17] considered special cases of
the problem.

e k = 4: 2 pairs of regular depots. Running time O(n®).
e k =2: 2 depots, one input, one output. Running time O(n3).

Our result

Let MCF(n, m) be the running time to solve min-cost flow on a
unit capacity graph with m edges and n vertices.
MCF(n,m) = O(y/nm), [Lee-Sidford '13].

Theorem
The k-depot warehouse tour can be solved in

e O(n*t1 + MCF(n, n?)) time if all depots are input(output)
depots.

e O(n* + MCF(n, n?)) time otherwise.

10

Our result

Let MCF(n, m) be the running time to solve min-cost flow on a
unit capacity graph with m edges and n vertices.
MCF(n,m) = O(y/nm), [Lee-Sidford '13].

Theorem
The k-depot warehouse tour can be solved in

e O(n*t1 + MCF(n, n?)) time if all depots are input(output)
depots.

e O(n* + MCF(n, n?)) time otherwise.

Counterintuitive! Having depots of only one type is harder.

10

A simple polynomial time algorithm

What does a solution look like?

The feasible solution is a closed walk W. The (disjoint) union of
the edges in the solution is a multigraph H with the following
properties.

11

What does a solution look like?

The feasible solution is a closed walk W. The (disjoint) union of
the edges in the solution is a multigraph H with the following
properties.

1. Circulation property: The in-degree and out-degree are the
same for each vertex.

11

What does a solution look like?

The feasible solution is a closed walk W. The (disjoint) union of
the edges in the solution is a multigraph H with the following
properties.

1. Circulation property: The in-degree and out-degree are the
same for each vertex.

2. Covering property: Each vertex has in-degree at least 1.

11

What does a solution look like?

The feasible solution is a closed walk W. The (disjoint) union of
the edges in the solution is a multigraph H with the following

properties.

1.

Circulation property: The in-degree and out-degree are the

same for each vertex.

Covering property: Each vertex has in-degree at least 1. Each
vertex in R has in-degree exactly 1.

11

What does a solution look like?

The feasible solution is a closed walk W. The (disjoint) union of
the edges in the solution is a multigraph H with the following

properties.

1. Circulation property: The in-degree and out-degree are the

same for each vertex.

2. Covering property: Each vertex has in-degree at least 1. Each
vertex in R has in-degree exactly 1.

3. Connectivity property: H is (weakly) connected.

11

What does a solution look like?

The feasible solution is a closed walk W. The (disjoint) union of
the edges in the solution is a multigraph H with the following

properties.

1. Circulation property: The in-degree and out-degree are the

same for each vertex.

2. Covering property: Each vertex has in-degree at least 1. Each
vertex in R has in-degree exactly 1.

3. Connectivity property: H is (weakly) connected.

Every graph with the above properties induces a feasible solution:
it is a Eulerian graph that contains all vertices.

11

A simpler connectivity condition

Theorem
If H a subgraph of G has the circulation property and covering

property, then it is connected if and only if D is connected.

12

Structure graph of a solution

The structure graph of a solution is obtained by the following
transformation. For each depot to depot path that does not
contain any other depot P. Let P’ be the sequence of internal
vertices, and P is from d to d’. We create an edge e from d to d’,
and give it the label P’.

13

Structure graph of a solution

The structure graph of a solution is obtained by the following
transformation. For each depot to depot path that does not
contain any other depot P. Let P’ be the sequence of internal
vertices, and P is from d to d’. We create an edge e from d to d’,
and give it the label P’.

13

Structure graph of a solution

The structure graph of a solution is obtained by the following
transformation. For each depot to depot path that does not
contain any other depot P. Let P’ be the sequence of internal
vertices, and P is from d to d’. We create an edge e from d to d’,
and give it the label P’.

13

If F is a subset of edges of a structure graph, ¢(F) are the edges
in the solution corresponding to F.

14

If F is a subset of edges of a structure graph, ¢(F) are the edges
in the solution corresponding to F.

e The optimal structure graph contains some connected
subgraph F.

14

If F is a subset of edges of a structure graph, ¢(F) are the edges
in the solution corresponding to F.

e The optimal structure graph contains some connected
subgraph F.

e Find minimum cost valid subgraph of G containing all the
edges of ¢(F) implies finding an optimal solution.

14

The algorithm

T be a set of trees(in the undirected sense) such that every
structure graph must contain at least one of the tree as a subgraph.

15

The algorithm

T be a set of trees(in the undirected sense) such that every

structure graph must contain at least one of the tree as a subgraph.
Foreach T € T

Find an minimum cost valid subgraph of G that contains all
edges in ¢(T).
Return the minimum

15

The algorithm

T be a set of trees(in the undirected sense) such that every
structure graph must contain at least one of the tree as a subgraph.
Foreach T e T

Find an minimum cost valid subgraph of G that contains all
edges in ¢(T).
Return the minimum

Running time

O(|T| x time to find a minimum cost valid subgraph).

15

The algorithm

T be a set of trees(in the undirected sense) such that every
structure graph must contain at least one of the tree as a subgraph.
Foreach T e T

Find an minimum cost valid subgraph of G that contains all
edges in ¢(T).
Return the minimum
Running time

O(|T| x time to find a minimum cost valid subgraph).

Time to find a minimum cost valid subgraph:

15

The algorithm

T be a set of trees(in the undirected sense) such that every

structure graph must contain at least one of the tree as a subgraph.
Foreach T € T

Find an minimum cost valid subgraph of G that contains all
edges in ¢(T).
Return the minimum
Running time
O(|T| x time to find a minimum cost valid subgraph).

Time to find a minimum cost valid subgraph:reduces to a min-cost
flow computation on a unit capacity graph of O(n?) edges.

15

A candidate set of trees

T is the set of spanning trees that can appear in a structure graph.
The weight of a tree is the number of labels on the edges.

16

A candidate set of trees

T is the set of spanning trees that can appear in a structure graph.
The weight of a tree is the number of labels on the edges.

Claim: |T| = O(n*k=1).

16

A candidate set of trees

T is the set of spanning trees that can appear in a structure graph.
The weight of a tree is the number of labels on the edges.

Claim: |T| = O(n*k=1).

e There are k nodes, so there can be f(k) trees (ignoring
labels).

16

A candidate set of trees

T is the set of spanning trees that can appear in a structure graph.
The weight of a tree is the number of labels on the edges.
Claim: |T| = O(n*k=1).

e There are k nodes, so there can be f(k) trees (ignoring
labels).

e Each tree has k — 1 edges. Each edge can have at most 2
labels.

16

A candidate set of trees

T is the set of spanning trees that can appear in a structure graph.
The weight of a tree is the number of labels on the edges.
Claim: |T| = O(n*k=1).

e There are k nodes, so there can be f(k) trees (ignoring

labels).

e Each tree has k — 1 edges. Each edge can have at most 2
labels.

e Each tree has at most 2(k — 1) labels (weight at most
2(k—1)).

16

A candidate set of trees

T is the set of spanning trees that can appear in a structure graph.
The weight of a tree is the number of labels on the edges.
Claim: |T| = O(n*k=1).

e There are k nodes, so there can be f(k) trees (ignoring
labels).

e Each tree has k — 1 edges. Each edge can have at most 2
labels.

e Each tree has at most 2(k — 1) labels (weight at most
2(k —1)).

There are

f(k) (g) (n ; 2) (n - 2(2k - 1)> — O(n?tk—1)y

trees.

16

A slow polynomial time algorithm

Theorem
There exists an algorithm that solves the k-depot warehouse tour

problem in O(n*k=Y MCF (n, n?)) time.

17

A slow polynomial time algorithm

Theorem
There exists an algorithm that solves the k-depot warehouse tour

problem in O(n*k=Y MCF (n, n?)) time.

A simple improvement: use dynamic min-cost flow. Update the
valid subgraph in O(n?) time.

17

A slow polynomial time algorithm

Theorem
There exists an algorithm that solves the k-depot warehouse tour

problem in O(n*k=Y MCF (n, n?)) time.
A simple improvement: use dynamic min-cost flow. Update the
valid subgraph in O(n?) time.

Theorem
There exists an algorithm that solves the k-depot warehouse tour

problem in O(n*k=1) . n2 - MCF(n, n?)) = O(n?* + MCF(n, n?))
time.

17

A slow polynomial time algorithm

Theorem
There exists an algorithm that solves the k-depot warehouse tour

problem in O(n*k=Y MCF (n, n?)) time.

A simple improvement: use dynamic min-cost flow. Update the
valid subgraph in O(n?) time.

Theorem
There exists an algorithm that solves the k-depot warehouse tour

problem in O(n*k=1) . n2 - MCF(n, n?)) = O(n?* + MCF(n, n?))
time.

Worse than the state of the art for k < 4.

17

Faster algorithm: using a better set of trees.

Our analysis:

e T set of possible spanning trees in structure graphs.

e Bound |7| by O(n"), where w is the maximum weight over
all trees in 7.

18

Our analysis:

e T set of possible spanning trees in structure graphs.

e Bound |7| by O(n"), where w is the maximum weight over
all trees in 7.

Idea: Let 7 be the set of minimum spanning trees.

18

Do we expect improvements?

Weight < 2

Weight 0

Do we expect improvements?

Weight < 2

Weight 0

Yes!

The punch line

mst(H): the weight of the minimum spanning tree in H.

20

The punch line

mst(H): the weight of the minimum spanning tree in H.

Theorem (MST theorem)
Let H be a structure graph on k vertices, and |Dy|,|Do| > 1, then

mst(H) < k — 2.

20

The punch line

mst(H): the weight of the minimum spanning tree in H.

Theorem (MST theorem)

Let H be a structure graph on k vertices, and |Dy|,|Do| > 1, then
mst(H) < k — 2.

Corollary

There exists an algorithm for k-depot warehouse tour with running
time O(n* + MCF(n, n?)), for the case when there is at least one

input and output depot.

20

Weights of the structure graph

Upper bound on the weights of edges, depending on depot type.

1 0

-® O -®
e >~ 0 O——0

21

Weights of the structure graph

Upper bound on the weights of edges, depending on depot type.

1 0

® O @
® O O ~O

Summarized by having two kinds of vertex weights.

wo(v) =0if v € Do, wo(v) =1if v € Dy.
o Wl(V) =0ifve D, wi(v)=1if v e Do.
e w((u,v)) = wo(u) + wi(v).

21

Weights of the structure graph

Upper bound on the weights of edges, depending on depot type.

1 0

® O @
® O O ~O

Summarized by having two kinds of vertex weights.

wo(v) =0if v € Do, wo(v) =1if v € Dy.
o Wl(V) =0ifve D, wi(v)=1if v e Do.
e w((u,v)) = wo(u) + wi(v).

w’(e) is an upper bound to the edge weight of e.

21

Weights of the structure graph

Upper bound on the weights of edges, depending on depot type.

1 0

® O @
® O O ~O

Summarized by having two kinds of vertex weights.

wo(v) =0if v € Do, wo(v) =1if v € Dy.
o Wl(V) =0ifve D, wi(v)=1if v e Do.
o w'((u,v)) = wo(u) + wi(v).
w'(e) is an upper bound to the edge weight of e. We will abuse

the notation and refer w’(e) as the edge weight.

21

Ear decomposition

Let G = (V, E) be a directed graph. A sequence of set of edges
Eq, ..., Ex that partitions E is a ear decomposition if:

e FE;is a cycle, each E, ..., Ey is a path(including cycles).
e The start and end of the path E; are vertices in

V(E1 U...UE;_1). No other vertex in V(E;) is in

\/(El Uu...u E,',l).

Eq, ..., Ex are called ears.

22

Example of an ear decomposition

23

Example of an ear decomposition

23

Example of an ear decomposition

23

Example of an ear decomposition

23

Example of an ear decomposition

23

Ear decomposition

Theorem
Let G be a strongly connected directed graph, and C is a cycle in

G. There exists a ear decomposition Eq, ..., E; where E; = C.

24

Proof of the MST theorem

Proof by induction on the number of ears in the ear decomposition.

Let H have ear decomposition Eq, ..., E;. We can chose E; to be
a cycle with at least one input depot and one output depot.

25)

Base Case

Theorem
Let P=wvy,...,v, be a path and P start with a input depot, and

end with an output depot, then there exists an edge of weight 2.

26

Base Case

Theorem
Let P=wvy,...,v, be a path and P start with a input depot, and

end with an output depot, then there exists an edge of weight 2.
Proof.

Since v is an input depot, v, is an output depot. For some i/, v; is
an input depot and vj;1 is an output depot. The edge v;vj1 has
weight 2. O

26

Base Case

Theorem
Let P=wvy,...,v, be a path and P start with a input depot, and

end with an output depot, then there exists an edge of weight 2.
Proof.

Since v is an input depot, v, is an output depot. For some i/, v; is
an input depot and vj;1 is an output depot. The edge v;vj1 has
weight 2. O
Theorem

C is a cycle of k vertices with at least one input depot and one
output depot, then mst(C) = k — 2.

26

Base Case

Theorem
Let P=wvy,...,v, be a path and P start with a input depot, and

end with an output depot, then there exists an edge of weight 2.
Proof.

Since v is an input depot, v, is an output depot. For some i/, v; is
an input depot and vj;1 is an output depot. The edge v;vj1 has
weight 2. O
Theorem

C is a cycle of k vertices with at least one input depot and one
output depot, then mst(C) = k — 2.

Proof.

The total edge weight is .. w'(e) = >, cc wo(v) + wa(v) = k.
Take any path from an input depot to an output depot, and
remove the weight 2 edge in the path. 0J

26

Inductive step

Path case. Assume E; is a path and not a cycle.
H = (\/(El U...u Etfl), Eu...U Etfl).
mst(H) < mst(H') + w'(E;) — maxecg, w'(e).

27

Inductive step

Path case. Assume E; is a path and not a cycle.
H = (\/(El U...uU Etfl), Eu...U Etfl).
mst(H) < mst(H') + w'(E;) — maxecg, w'(e).

mst(H')

27

Inductive step

Path case. Assume E; is a path and not a cycle.
H = (\/(El U...uU Etfl), Eu...U Etfl).
mst(H) < mst(H') + w'(E;) — maxecg, w'(e).

27

Inductive step. cont.

mst(H) < mst(H') + Z — max w'(e)
eckE; !
<S(IVH) =2)+) w'(e) - max w'(e)
eckE;
= (IV(H)] = 2) + (IV(Ex)| — wa(u) — wo(v)) — max w'(e)

ecE;

= (|V(H)| = 2) + 2 = wi(u) — wo(v) — e w'(e).

We have to show that wi(u) + wo(v) + maxecg, w'(e) > 2.

28

Inductive step. cont.

Prove that: wy(u) + wo(v) + maxecg, w'(e) > 2.

29

Inductive step. cont.

Prove that: wy(u) + wo(v) + maxecg, w'(e) > 2.

e wi(u) =1, one of the edges containing u has weight at least
1.

29

Inductive step. cont.

Prove that: wy(u) + wo(v) + maxecg, w'(e) > 2.

e wi(u) =1, one of the edges containing u has weight at least
1.

e Similarly for wp(v) = 1.

29

Inductive step. cont.

Prove that: wy(u) + wo(v) + maxecg, w'(e) > 2.
e wi(u) =1, one of the edges containing u has weight at least
1.
e Similarly for wp(v) = 1.

e wi(u)+ wo(v) =0, then E; is a path from a input depot to a
output depot, hence there exists an edge of weight 2 in E;.

29

Inductive step. cont.

Prove that: wy(u) + wo(v) + maxecg, w'(e) > 2.

e wi(u) =1, one of the edges containing u has weight at least
1.

e Similarly for wp(v) = 1.

e wi(u)+ wo(v) =0, then E; is a path from a input depot to a

output depot, hence there exists an edge of weight 2 in E;.

The case where E; is a cycle is similar.

29

Inductive step. cont.

Prove that: wy(u) + wo(v) + maxecg, w'(e) > 2.

e wi(u) =1, one of the edges containing u has weight at least
1.

e Similarly for wp(v) = 1.

e wi(u)+ wo(v) =0, then E; is a path from a input depot to a

output depot, hence there exists an edge of weight 2 in E;.

The case where E; is a cycle is similar. This completes the proof.

29

What about only input depots?

Theorem
Let H be a k-vertex structure graph with only input depots, then
mst(H) < k — 1.

30

What about only input depots?

Theorem
Let H be a k-vertex structure graph with only input depots, then
mst(H) < k — 1.

Same proof by induction on ear decomposition. The base case is a
single cycle C, where mst(C) = k — 1, the rest of the proof follows.

30

Variations

e What if the dist is not a metric?

31

Variations

e What if the dist is not a metric? Use a shortest path metric
dist’ instead.

31

Variations

e What if the dist is not a metric? Use a shortest path metric
dist’ instead.

e What if the machine can start only in locations Lgat, and end
in a set of locations Lgpg?

31

Variations

e What if the dist is not a metric? Use a shortest path metric
dist’ instead.

e What if the machine can start only in locations Lgat, and end
in a set of locations L.,y? Simple transformation to the case
where machine start and end at same position.

31

Variations

e What if the dist is not a metric? Use a shortest path metric
dist’ instead.

e What if the machine can start only in locations Lgat, and end
in a set of locations L.,y? Simple transformation to the case
where machine start and end at same position.

e What if each input request can only be completed by a
particular input depot?

31

Variations

e What if the dist is not a metric? Use a shortest path metric
dist’ instead.

e What if the machine can start only in locations Lgat, and end
in a set of locations L.,y? Simple transformation to the case
where machine start and end at same position.

e What if each input request can only be completed by a
particular input depot? Remove edges from depots to the
request in the warehouse network, compute a new metric, and
use the new metric to construct the warehouse network.

31

Some ongoing work

e Output requests only, but a machine can hold two item at a
time.

32

Some ongoing work

e Output requests only, but a machine can hold two item at a
time. Solvable in polynomial time if the metric is symmetric.
[Xu, Yang, Zhang Unpublished]

32

Some ongoing work

e Output requests only, but a machine can hold two item at a
time. Solvable in polynomial time if the metric is symmetric.
[Xu, Yang, Zhang Unpublished]

e Multiple machines.

32

Some ongoing work

e Output requests only, but a machine can hold two item at a
time. Solvable in polynomial time if the metric is symmetric.
[Xu, Yang, Zhang Unpublished]

e Multiple machines. Solvable in polynomial time if number of

empty depot is constant. [Unpublished]

32

Some ongoing work

e Output requests only, but a machine can hold two item at a
time. Solvable in polynomial time if the metric is symmetric.
[Xu, Yang, Zhang Unpublished]

e Multiple machines. Solvable in polynomial time if number of
empty depot is constant. [Unpublished]

e Each request is a set of locations.

32

Some ongoing work

e Output requests only, but a machine can hold two item at a
time. Solvable in polynomial time if the metric is symmetric.
[Xu, Yang, Zhang Unpublished]

e Multiple machines. Solvable in polynomial time if number of
empty depot is constant. [Unpublished]

e Each request is a set of locations. Unknown status,
preliminary work with Madan and Shen.

32

Thank you!

