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A warehouse

An automated warehouse with input depots and output depots. It
has to complete input(storage) and output(retrieval) requests.

Figure 1: Demag V-type crane machine. Source: demagcranes.com


demagcranes.com

The storage and retrial machine

e The machine start at some depot.
e The machine can hold at most one item.

e The machine can pick up an item from any input depot, and
drop off the item at a input request location.

e The machine can pick up an item from a output request
location, and drop off the item at any output depot.

e The machine must return to the original depot.
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At most 2 request can be completed per depot to depot trip.

e input depot — input request— output request— output depot
e input depot— input request— arbitrary depot
e arbitrary depot— output request— output depot

e output depot — input depot



Formalizing the problem: The input

Input depots Dy, output depots Do, D = D; U Do. |D| = k.

Input request Ry, output request Rp, R = Ry U Rp. |R| = n.
e V = DUR, the set of vertices.

dist: V x V — R, a asymmetric metric.



Model as a walk on a graph

For input Dy, Do, R, Ro, ¢, we construct the following weighted
directed graph G on vertices V.

e For d,d" € D, there is an edge (d, d").

e For v € V, u € Ry, there is an edge (u, v).

e Forve V, ue Rp, there is an edge (v, u).
e For v e R, d € Dy, there is an edge (d, v).
e For v € Rp, d € Do, there is an edge (v, d).

The cost of an edge c(u, v) = dist(u, v). Such graph G is called a

warehouse network.



Warehouse network, high level view




The abstract problem

Problem: k-depot warehouse tour
Input: A warehouse network with k depot vertices.

Output: A minimum cost closed walk that goes through every

vertex at least once.
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The abstract problem

Problem: k-depot warehouse tour
Input: A warehouse network with k depot vertices.

Output: A minimum cost closed walk that goes through every

vertex at least once.

Note: we assume in the optimal solution, all k depot has to be

visited.
Closely related to TSP.

Observation: there is an optimal solution that goes through each

vertex in R exactly once, because dist is a metric.



Previous results

A regular depot is a pair of input depot d and output depot d’
with dist(d, d") = 0.

[Gharehgozli, Yu, Zhang, de Koster '17] considered special cases of
the problem.

e k = 4: 2 pairs of regular depots. Running time O(n®).
e k =2: 2 depots, one input, one output. Running time O(n3).



Our result

Let MCF(n, m) be the running time to solve min-cost flow on a
unit capacity graph with m edges and n vertices.
MCF(n,m) = O(y/nm), [Lee-Sidford '13].

Theorem
The k-depot warehouse tour can be solved in

e O(n*t1 + MCF(n, n?)) time if all depots are input(output)
depots.

e O(n* + MCF(n, n?)) time otherwise.
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Our result

Let MCF(n, m) be the running time to solve min-cost flow on a
unit capacity graph with m edges and n vertices.
MCF(n,m) = O(y/nm), [Lee-Sidford '13].

Theorem
The k-depot warehouse tour can be solved in

e O(n*t1 + MCF(n, n?)) time if all depots are input(output)
depots.

e O(n* + MCF(n, n?)) time otherwise.

Counterintuitive! Having depots of only one type is harder.
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A simple polynomial time algorithm



What does a solution look like?

The feasible solution is a closed walk W. The (disjoint) union of
the edges in the solution is a multigraph H with the following
properties.
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What does a solution look like?

The feasible solution is a closed walk W. The (disjoint) union of
the edges in the solution is a multigraph H with the following

properties.

1. Circulation property: The in-degree and out-degree are the

same for each vertex.

2. Covering property: Each vertex has in-degree at least 1. Each
vertex in R has in-degree exactly 1.

3. Connectivity property: H is (weakly) connected.

Every graph with the above properties induces a feasible solution:
it is a Eulerian graph that contains all vertices.
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A simpler connectivity condition

Theorem
If H a subgraph of G has the circulation property and covering

property, then it is connected if and only if D is connected.
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Structure graph of a solution

The structure graph of a solution is obtained by the following
transformation. For each depot to depot path that does not
contain any other depot P. Let P’ be the sequence of internal
vertices, and P is from d to d’. We create an edge e from d to d’,
and give it the label P’.
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If F is a subset of edges of a structure graph, ¢(F) are the edges
in the solution corresponding to F.
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If F is a subset of edges of a structure graph, ¢(F) are the edges
in the solution corresponding to F.

e The optimal structure graph contains some connected
subgraph F.

e Find minimum cost valid subgraph of G containing all the
edges of ¢(F) implies finding an optimal solution.
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The algorithm

T be a set of trees(in the undirected sense) such that every
structure graph must contain at least one of the tree as a subgraph.
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The algorithm

T be a set of trees(in the undirected sense) such that every

structure graph must contain at least one of the tree as a subgraph.
Foreach T € T

Find an minimum cost valid subgraph of G that contains all
edges in ¢(T).
Return the minimum
Running time
O(|T| x time to find a minimum cost valid subgraph).

Time to find a minimum cost valid subgraph:reduces to a min-cost
flow computation on a unit capacity graph of O(n?) edges.

15



A candidate set of trees

T is the set of spanning trees that can appear in a structure graph.
The weight of a tree is the number of labels on the edges.
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A candidate set of trees

T is the set of spanning trees that can appear in a structure graph.
The weight of a tree is the number of labels on the edges.
Claim: |T| = O(n*k=1).

e There are k nodes, so there can be f(k) trees (ignoring
labels).

e Each tree has k — 1 edges. Each edge can have at most 2
labels.

e Each tree has at most 2(k — 1) labels (weight at most
2(k —1)).

There are

f(k) (g) (n ; 2) (n - 2(2k - 1)> — O(n?tk—1)y

trees.
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A slow polynomial time algorithm

Theorem
There exists an algorithm that solves the k-depot warehouse tour

problem in O(n*k=Y MCF (n, n?)) time.
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A slow polynomial time algorithm

Theorem
There exists an algorithm that solves the k-depot warehouse tour

problem in O(n*k=Y MCF (n, n?)) time.

A simple improvement: use dynamic min-cost flow. Update the
valid subgraph in O(n?) time.

Theorem
There exists an algorithm that solves the k-depot warehouse tour

problem in O(n*k=1) . n2 - MCF(n, n?)) = O(n?* + MCF(n, n?))
time.

Worse than the state of the art for k < 4.
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Faster algorithm: using a better set of trees.



Our analysis:

e T set of possible spanning trees in structure graphs.

e Bound |7| by O(n"), where w is the maximum weight over
all trees in 7.
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Our analysis:

e T set of possible spanning trees in structure graphs.

e Bound |7| by O(n"), where w is the maximum weight over
all trees in 7.

Idea: Let 7 be the set of minimum spanning trees.
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Do we expect improvements?

Weight < 2

Weight 0



Do we expect improvements?

Weight < 2

Weight 0

Yes!



The punch line

mst(H): the weight of the minimum spanning tree in H.
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The punch line

mst(H): the weight of the minimum spanning tree in H.

Theorem (MST theorem)

Let H be a structure graph on k vertices, and |Dy|,|Do| > 1, then
mst(H) < k — 2.

Corollary

There exists an algorithm for k-depot warehouse tour with running
time O(n* + MCF(n, n?)), for the case when there is at least one

input and output depot.
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Weights of the structure graph

Upper bound on the weights of edges, depending on depot type.
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Weights of the structure graph

Upper bound on the weights of edges, depending on depot type.
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Summarized by having two kinds of vertex weights.

wo(v) =0if v € Do, wo(v) =1if v € Dy.
o Wl(V) =0ifve D, wi(v)=1if v e Do.
o w'((u,v)) = wo(u) + wi(v).
w'(e) is an upper bound to the edge weight of e. We will abuse

the notation and refer w’(e) as the edge weight.
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Ear decomposition

Let G = (V, E) be a directed graph. A sequence of set of edges
Eq, ..., Ex that partitions E is a ear decomposition if:

e FE;is a cycle, each E, ..., Ey is a path(including cycles).
e The start and end of the path E; are vertices in

V(E1 U...UE;_1). No other vertex in V(E;) is in

\/(El Uu...u E,',l).

Eq, ..., Ex are called ears.

22



Example of an ear decomposition
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Ear decomposition

Theorem
Let G be a strongly connected directed graph, and C is a cycle in

G. There exists a ear decomposition Eq, ..., E; where E; = C.
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Proof of the MST theorem

Proof by induction on the number of ears in the ear decomposition.

Let H have ear decomposition Eq, ..., E;. We can chose E; to be
a cycle with at least one input depot and one output depot.

25)



Base Case

Theorem
Let P=wvy,...,v, be a path and P start with a input depot, and

end with an output depot, then there exists an edge of weight 2.
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Base Case

Theorem
Let P=wvy,...,v, be a path and P start with a input depot, and

end with an output depot, then there exists an edge of weight 2.
Proof.

Since v is an input depot, v, is an output depot. For some i/, v; is
an input depot and vj;1 is an output depot. The edge v;vj1 has
weight 2. O
Theorem

C is a cycle of k vertices with at least one input depot and one
output depot, then mst(C) = k — 2.

Proof.

The total edge weight is .. w'(e) = >, cc wo(v) + wa(v) = k.
Take any path from an input depot to an output depot, and
remove the weight 2 edge in the path. 0J
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Inductive step

Path case. Assume E; is a path and not a cycle.
H = (\/(El U...u Etfl), Eu...U Etfl).
mst(H) < mst(H') + w'(E;) — maxecg, w'(e).
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Inductive step. cont.

mst(H) < mst(H') + Z — max w'(e)
eckE; !
<S(IVH) =2)+ ) w'(e) - max w'(e)
eckE;
= (IV(H)] = 2) + (IV(Ex)| — wa(u) — wo(v)) — max w'(e)

ecE;

= (|V(H)| = 2) + 2 = wi(u) — wo(v) — e w'(e).

We have to show that wi(u) + wo(v) + maxecg, w'(e) > 2.
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Inductive step. cont.

Prove that: wy(u) + wo(v) + maxecg, w'(e) > 2.
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Inductive step. cont.

Prove that: wy(u) + wo(v) + maxecg, w'(e) > 2.

e wi(u) =1, one of the edges containing u has weight at least
1.

e Similarly for wp(v) = 1.

e wi(u)+ wo(v) =0, then E; is a path from a input depot to a

output depot, hence there exists an edge of weight 2 in E;.

The case where E; is a cycle is similar. This completes the proof.
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What about only input depots?

Theorem
Let H be a k-vertex structure graph with only input depots, then
mst(H) < k — 1.
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What about only input depots?

Theorem
Let H be a k-vertex structure graph with only input depots, then
mst(H) < k — 1.

Same proof by induction on ear decomposition. The base case is a
single cycle C, where mst(C) = k — 1, the rest of the proof follows.
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Variations

e What if the dist is not a metric?
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Variations

e What if the dist is not a metric? Use a shortest path metric
dist’ instead.

e What if the machine can start only in locations Lgat, and end
in a set of locations L.,y? Simple transformation to the case
where machine start and end at same position.

e What if each input request can only be completed by a
particular input depot? Remove edges from depots to the
request in the warehouse network, compute a new metric, and
use the new metric to construct the warehouse network.
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e Output requests only, but a machine can hold two item at a
time.
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Some ongoing work

e Output requests only, but a machine can hold two item at a
time. Solvable in polynomial time if the metric is symmetric.
[Xu, Yang, Zhang Unpublished]

e Multiple machines. Solvable in polynomial time if number of
empty depot is constant. [Unpublished]

e Each request is a set of locations. Unknown status,
preliminary work with Madan and Shen.
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Thank you!



