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k-cut

Graph G = (V, E). c : E→ R+ a capacity function. A k-cut is the set
of edges crossing some partition of the verticesP such that
|P | ≥ k. A cut is a 2-cut.

A min-k-cut is a k-cut with minimum capacity. 1/27



Applications

• Connectivity

• Image segmentation

• Clustering

• . . .
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Computation of min-cut

• Finding a min-cut reduces to finding min-st-cut for each pair of s
and t.

• Õ(mn) time: Maximum adjacency ordering. [Nagamochi-Ibaraki 92,

Stoer-Wagner 95].

• Õ(n2m) time: Randomized contraction. [Karger 92]

• Õ(n2) time: Randomized contraction. [Karger-Stein 96]

• Õ(m) time: tree packing, randomized. [Karger 98]

Fastest algorithms are through tree packing.
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Computation of min-k-cut

• Fix a partition class: nΘ(k2) [Goldschmidt-Hochbaum 94].

• Randomized contraction: Õ(n2(k−1)) [Karger-Stein 96].

• Divide and conquer: O(n(4+o(1))k) [Kamidoi-Yoshida-Nagamochi 07].

• Divide and conquer: O(n(4−o(1))k) [Xiao 08].

• Tree packing : Õ(n2k) [Thorup 08].

• Tree packing (and a lot of other ideas) :O(WkO(k)n(1+ω/3)k)
randomized, O(WkO(k)n(2ω/3)k) deterministic [Gupta-Lee-Li 18]

Fastest algorithms are through tree packing.
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Main Property

For a set of edges A, a tree T h-respects A if |T ∩ A| ≤ h. All tree
packing based min-cut algorithms shows the following theorem for
some parameter of t, h, k.

Theorem

There exists a collection of t trees, such that for each min-k-cut A,
there is a tree that h-respects A.

• Karger showed if k = 2, then t = Õ(m) and h = 1.

• Thorup showed t = Õ(mk3) and h = 2k− 2.
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Our contribution

Analyzing the dual of k-cut LP [Naor and Rabani 01], to obtain a simple
tree packing.

Theorem

There exists a collection of m trees, such that for each min-k-cut A,
there is a tree that (2k− 3)-respects A.

Implies a slightly faster deterministic algorithm for k-cut. Õ(n2k−1).
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A tree 3-respect a 3-cut
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A tree 3-respect a 3-cut
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A tree 3-respect a 3-cut
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Algorithm (Same as Thorup)

Find all min-cuts given the collection of trees.

1. For each tree T in the collection, and set of 2k− 3 edges in T.
Remove the edges, and group the obtained components into k
parts. It is a candidate min-k-cut.

2. Return the candidates of the smallest value.

Running time = (m×
(︀ n
2k−3

)︀
set of edges ×

ways to partition 2k− 2 components into k parts).
= O(mn2k−3) = O(n2k−1)
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Tree packing and min-cut, a LP
perspective
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Cut LP’

T (G) is the set of spanning trees of G.

min
∑︁
e∈E

cexe

s.t.
∑︁
e∈T

xe ≥ 1 for all T ∈ T (G)

xe ≤ 1 for all e ∈ E

xe ≥ 0 for all e ∈ E

ce is positive, xe ≤ 1 is redundant.
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Cut LP

min
∑︁
e∈E

cexe

s.t.
∑︁
e∈T

xe ≥ 1 for all T ∈ T (G)

xe ≥ 0 for all e ∈ E

λ(G), the value of the min-cut, is the integral opt of this LP.

Theorem

The integrality gap of the cut LP is 2(1− 1/n).
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Tree packing LP

The fractional spanning tree packing number, τ(G), is the value of
the following LP.

mx
∑︁

T∈T (G)

yT

s.t
∑︁
T3e

yT ≤ c(e) e ∈ E

yT ≥ 0 T ∈ T (G)

Tree packing LP is the dual of the Cut LP.
τ(G) ≥ n

2(n−1) · λ(G).
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Tree packing and cuts

Theorem (Cut-Tree Packing Theorem)

Let y be a maximum tree packing. For each min-cut A, there exists a
tree T in the packing that 1-respects A.

There exists a maximum tree packing consists ofm trees.
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Proof of the Cut-Tree Packing Theorem

Assume τ(G) = 1. Otherwise we can scale all capacities by
c(e)/τ(G).
y is a probability distribution over the spanning trees.
A is a fixed min-cut.
q is the fraction of trees that 1-respect A.

We want to show q > 0.
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∑︁
T

yT |T ∩ A| ≥
∑︁

T:|T∩A|≥2

yT |T ∩ A| ≥ 2(1− q).

2(1− q) ≤
∑︁
T

yT |T ∩ A|

≤ c(A)

= λ(G)

≤ 2(1− 1/n).

q ≥
1

n
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Tree packing and k-cuts
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Tree packing and k-cut?

Can we obtain a similar k-Cut-Tree Packing theorem?

Arbitrary maximum tree packing is insufficient.
Needs a special maximum tree packing, the ideal tree packing.

Theorem (k-Cut-Ideal Tree Packing Theorem (Thorup))

Let y be an ideal tree packing, such that each min-k-cut A, a constant
faction of the trees (2k− 2)-respects A.

k = 2, then (2k− 2) = 2, a bit worse than the Cut-Tree Packing
Theorem. The ideal tree packing consists of exponential number of
trees. There is an approximate ideal tree packing with Õ(mk3) trees.
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LP tree packing

Theorem (k-Cut-Tree Packing Theorem)

Let y be a maximum LP tree packing. For each min-k-cut A, there
exists a tree in the packing that (2k− 3)-respects A.

A maximum LP tree packing is not a maximum tree packing of G.
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LP tree packing
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The k-cut LP

min
∑︁
e∈E

cexe

s.t.
∑︁
e∈T

xe ≥ k− 1 for all T ∈ T (G)

xe ≤ 1 for all e ∈ E

xe ≥ 0 for all e ∈ E

Theorem (Chekuri, Guha and Naor 06)

The integrality gap of the k-cut LP is 2(1− 1/n).
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Dual LP

max (k− 1)
∑︁

T∈T (G)

yT −
∑︁
e∈E

ze

s.t.
∑︁
T3e

yT ≤ ce + ze for all e ∈ E

yT ≥ 0 for all T ∈ T (G)

The y in an optimal solution is called a maximum LP tree packing.
y is NOT a tree packing under capacity c, but a tree packing for
capacity c+ z. z is called the extra capacity.
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Theorem (k-Cut-Tree Packing Theorem)

Let y be a maximum LP tree packing. For each min-k-cut A, there
exists a tree in the packing that (2k− 3)-respects A.

Fix A min-k-cut A. Let q be the fraction of trees that
(2k− 3)-respects A. We will show that q ≥ 1

n .
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Assume
∑︀

T yT = 1.

(k− 1)
∑︁
T

yT − z(E) ≥
1

2(1− 1
n)
λk(G)

k− 1 ≥
1

2(1− 1
n)
λk(G) + z(E)

2
(︂
1−

1

n

)︂
(k− 1) ≥ λk(G) + 2(1− 1/n)z(E) ≥ λk(G) + z(E).

∑︁
T

yT |T ∩ A| ≥
∑︁

T:|T∩A|≥(2k−3)+1

yT |T ∩ A|

≥ 2(k− 1)(1− q).
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2(k− 1)(1− q) ≤
∑︁
T

yT |T ∩ A|

≤ c(A) + z(A)

= λk(G) + z(A)

≤ λk(G) + z(E)

≤ 2(k− 1)(1− 1/n).

q ≥ 1−
2(k− 1)(1− 1

n)

2(k− 1)
=

1

n
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Stronger statements

Theorem (Approximate k-Cut-Tree Packing Theorem)

Let y be a (1− ϵ)-approximate max LP tree packing. For each set of
edges A such that c(A) ≤ αλk(G),

• If ϵ = O(1/n), there exists a tree T that
(d2α(k− 1)e − 1)-respects A.

• If ϵ = O(1/k), there is a constant faction of trees that
b2α(k− 1)c-respect A.

Corollary

There are O(nb2α(k−1)c) α-approximate min-k-cuts.
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Additional results

• A simple proof of the integrality gap of k-cut LP is 2(1− 1
n).

• Explore the relation between Thorup’s recursive tree packing,
principal sequence of partitions, and Lagrangean relaxation
approach to approximate k-cut [Barahona 00, Ravi and Sinha 08]
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