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k-cut

Graph G = (V, E). ¢ : E — R, a capacity function. A k-cut is the set
of edges crossing some partition of the vertices & such that
|2 | = k. A cut is a 2-cut.

A min-k-cut is a k-cut with minimum capacity. -



Applications

Connectivity

e Image segmentation

Clustering
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Computation of min-cut

e Finding a min-cut reduces to finding min-st-cut for each pair of s
and t.

e O(mn) time: Maximum adjacency ordering. [Nagamochi-Ibaraki 92,
Stoer-Wagner 95].

e O(n?m) time: Randomized contraction. [Karger 92]
e O(n?) time: Randomized contraction. [Karger-Stein 96]

e O(m) time: tree packing, randomized. [Karger 98]
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Computation of min-k-cut

e Fix a partition class: n®?) [Goldschmidt-Hochbaum 94].

e Randomized contraction: O(n2k—") [Karger-tein 96].

e Divide and conquer: O(n(4+°(1))k) [Kamidoi-Yoshida-Nagamochi 07].
e Divide and conquer: O(n{—°(M)¥) xiao 08].

e Tree packing : O(n%¥) [Thorup 08].

e Tree packing (and a lot of other ideas) :0(WkC(K)p(1+w/3)k)
randomized, O(WkP)n(2w/3)k) deterministic [Gupta-Lee-Li 18]
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Main Property

For a set of edges A, a tree T h-respects A if [TNA| < h. All tree
packing based min-cut algorithms shows the following theorem for
some parameter of t, h, k.

Theorem

There exists a collection of t trees, such that for each min-k-cut A,

there is a tree that h-respects A.

e Karger showed if k = 2, thent = O(m) and h = 1.
e Thorup showed t = O(mk®) and h = 2k — 2.
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Our contribution

Analyzing the dual of k-cut LP [Naor and Rabani 01], to obtain a simple
tree packing.

Theorem

There exists a collection of m trees, such that for each min-k-cut A,

there is a tree that (2k — 3)-respects A.

Implies a slightly faster deterministic algorithm for k-cut. O(n%~").
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A tree 3-respect a 3-cut
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A tree 3-respect a 3-cut

N
e
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A tree 3-respect a 3-cut

N\
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Algorithm (Same as Thorup)

Find all min-cuts given the collection of trees.

1. For each tree T in the collection, and set of 2k — 3 edges in T.
Remove the edges, and group the obtained components into k
parts. It is a candidate min-k-cut.

2. Return the candidates of the smallest value.

n
2k—3
ways to partition 2k — 2 components into k parts).

— O(mnzk—S) = O(nzk—1)

Running time = (m x ( ) set of edges x
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Tree packing and min-cut, a LP

perspective
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Cut LP’

T (G) is the set of spanning trees of G.

min E CeXe

e€E
s.t. er > 1forall T € 7(G)
e€T

xe < 1foralle € E

Xe = Oforalle e E

Ce is positive, X, < 1is redundant.
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Cut LP

min E CeXe

e€E

s.t. er >1forall T € 7(G)

e€eT

Xe = Oforalle € E

A(G), the value of the min-cut, is the integral opt of this LP.

Theorem

The integrality gap of the cut LP is 2(1— 1/n).
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Tree packing LP

The fractional spanning tree packing number, T(G), is the value of
the following LP.

s.t ZyTSC(e) e€E
Toe

yr=0 Te J(G)
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Tree packing LP

The fractional spanning tree packing number, T(G), is the value of

the following LP.

s.t ZyTSC(e) e€E
Toe

yr=0 Te J(G)

Tree packing LP is the dual of the Cut LP.

7(G) > ﬁ -A(G).
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Tree packing and cuts

Theorem (Cut-Tree Packing Theorem)

Lety be a . For each min-cut A, there exists a

tree T in the packing that 1-respects A.
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Tree packing and cuts

Theorem (Cut-Tree Packing Theorem)

Lety be a . For each min-cut A, there exists a

tree T in the packing that 1-respects A.

There exists a maximum tree packing consists of m trees.
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Proof of the Cut-Tree Packing Theorem

Assume T(G) = 1. Otherwise we can scale all capacities by
c(e)/7(G).

y is a probability distribution over the spanning trees.

A is a fixed min-cut.

g is the fraction of trees that 1-respect A.
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Proof of the Cut-Tree Packing Theorem

Assume T(G) = 1. Otherwise we can scale all capacities by
c(e)/7(G).

y is a probability distribution over the spanning trees.

A is a fixed min-cut.

qg is the fraction of trees that 1-respect A. We want to show g > 0.
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Y wilTnAl= Y yilTnAl > 2(1—q).
T T:|TNA|>2
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Y wilTnAl= Y yilTnAl > 2(1—q).
T T:|TNA|>2
2(1—q) <) _yrlTnA|
T

< c(A)
= A(G)
<2(1—1n).
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Y wilTnAl= Y yilTnAl > 2(1—q).
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2(1—q) <) _yrlTnA|
T

< c(A)
=A(G)
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Tree packing and k-cuts
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Tree packing and k-cut?

Can we obtain a similar k-Cut-Tree Packing theorem?
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Tree packing and k-cut?

Can we obtain a similar k-Cut-Tree Packing theorem?
Arbitrary maximum tree packing is insufficient.
Needs a special maximum tree packing, the ideal tree packing.

Theorem (k-Cut-ldeal Tree Packing Theorem (Thorup))

Let y be an , such that each min-k-cut A, a constant

faction of the trees (2k — 2)-respects A.

k = 2, then (2k — 2) = 2, a bit worse than the Cut-Tree Packing
Theorem. The ideal tree packing consists of exponential number of
trees. There is an approximate ideal tree packing with O(mk®) trees.
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LP tree packing

Theorem (k-Cut-Tree Packing Theorem)

Lety bea . For each min-k-cut A, there

exists a tree in the packing that (2k — 3)-respects A.
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LP tree packing

Theorem (k-Cut-Tree Packing Theorem)

Lety bea . For each min-k-cut A, there

exists a tree in the packing that (2k — 3)-respects A.

A maximum LP tree packing is not a maximum tree packing of G.
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The k-cut LP

min E CeXe

e€kE

s.t. erz k—1forall T € 7(G)

eeT

Xe < 1foralle € E

Xe = Oforalle e E
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The k-cut LP

min E %

e€kE
s.t. er >k—1forall T € 7(G)
eeT

Xe < 1foralle € E

Xe = Oforalle e E

Theorem (Chekuri, Guha and Naor 06)

The integrality gap of the k-cut LP is 2(1— 1/n).
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Dual LP

max (k—1) Z YT — Zze

T€Z (G) e€E

s.t. ZVT <c.+ z.foralle € E
Toe

yr = 0forall T € 7(G)
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Dual LP
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Dual LP

max (k—1) Z YT — Zze

T€Z (G) e€E

s.t. ZVT <c.+ z.foralle € E
Toe

yr = 0forall T € 7(G)

The y in an optimal solution is called a maximum LP tree packing.
y is NOT a tree packing under capacity c, but a tree packing for
capacity ¢ + z. z is called the extra capacity.
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Theorem (k-Cut-Tree Packing Theorem)

Lety be a . For each min-k-cut A, there

exists a tree in the packing that (2k — 3)-respects A.

Fix A min-k-cut A. Let g be the fraction of trees that
(2k — 3)-respects A. We will show that g > %
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Assume ) ;yr=1.

(k—=1)) yr—2z(E) > M (G)
T

2(1—1)

k—1 > 2(17_%))%(6)"'2(‘:-)

2 (1 — 1) (k—1) = M(G) + 2(1—1/n)z(E) = A(G) + z(E).
n

Y yrlTnal>2 Y ylTnAl
-

T:|TNA|=(2k—3)+1
> 2(k—1)(1—q).
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2k—=1)(1—aq) <> yrITNA]
T

< ¢(A) + 2(A)

= A(G) + z(A)

< M(G) + z(E)

< 2(k—1)(1—Vn).

s 2(k—N(1—1) 1
2(k—1) n
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Stronger statements

Theorem (Approximate k-Cut-Tree Packing Theorem)

Lety be a . For each set of
edges A such that c(A) < aA,(G),

If e = O(1/n), there exists a tree T that

([2a(k— 1)] — 1)-respects A.

If e = O(1/k), there is a constant faction of trees that
[ 2a(k — 1) ]-respect A.
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Stronger statements

Theorem (Approximate k-Cut-Tree Packing Theorem)

Lety be a . For each set of
edges A such that c(A) < aA,(G),

If e = O(1/n), there exists a tree T that

([2a(k— 1)] — 1)-respects A.
If e = O(1/k), there is a constant faction of trees that
[ 2a(k — 1) ]-respect A.

Corollary

There are O(nl2a&—=N1) g-approximate min-k-cuts.
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Additional results

e A simple proof of the integrality gap of k-cut LP is 2(1— %).

e Explore the relation between Thorup’s recursive tree packing,
principal sequence of partitions, and Lagrangean relaxation
approach to approximate k-cut [Barahona 00, Ravi and Sinha 08]
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