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A hypergraph

A graph G = (V ,E ) consists of vertices V and edges

E ⊂ {{u, v} |u, v ∈ V }.

A hypergraph H = (V ,E ) consists of vertices V and edges

E ⊂ {U|U ⊂ V , |U| ≥ 2}.
Each edge is assigned with a positive weight w : E → R+.

2



A hypergraph

A graph G = (V ,E ) consists of vertices V and edges

E ⊂ {{u, v} |u, v ∈ V }.
A hypergraph H = (V ,E ) consists of vertices V and edges

E ⊂ {U|U ⊂ V , |U| ≥ 2}.

Each edge is assigned with a positive weight w : E → R+.

2



A hypergraph

A graph G = (V ,E ) consists of vertices V and edges

E ⊂ {{u, v} |u, v ∈ V }.
A hypergraph H = (V ,E ) consists of vertices V and edges

E ⊂ {U|U ⊂ V , |U| ≥ 2}.
Each edge is assigned with a positive weight w : E → R+.

2



Cut function

• Edge e ∈ E crosses S ⊂ V , if e ∩ S and e ∩ V \ S are both

non-empty.

• δ(S) is the set of all edges cross S .

• The cut function c : 2V → R+

c(S) =
∑

e∈δ(S)

w(e)

SS
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Cuts and min-cuts

• A cut is a bipartition of the vertices (S ,V \ S). We also call

the set S a cut.

• A cut S is a (global) min-cut if c(S) is minimized. It’s value

is denoted as λ(G ).

• A cut S a st-cut, if s ∈ S and t ∈ V \ S .

• The max-flow min-cut theorem is relates max-st-flow with

min-st-cut (also called local min-cuts). It’s value is denoted

as λ(G , s, t).
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Why min-cut?

The value of min-cut measures the connectivity of the graph.

Hence min-cuts are useful in clustering and combinatorial

optimization.

• disconnect railway networks

• image segmentation

• graph partitioning

• useful constraints for traveling salesman problem

• . . .
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Why all min-cuts?

• Reinforce railway networks

edge connectivity augmentation

[Gabow 1991; Naor, Gusfield, Martel 1997]

• data security [Kao 1996]

• graph drawing [Kant 1993]

• edge splitting [Nagamochi, Nakamura, Ibaraki 2000]

• . . .
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Outline

Our contribution: a deterministic algorithm that finds ALL min-cut

in a hypergraph in the same running time as finding a single

min-cut.

• How to find a single min-cut in a graph?

• What do we mean by ALL min-cuts and how did we find

them?

• A new algorithm for finding ALL min-cuts in graphs.

• How to modify the algorithm to work for hypergraphs?

n is the # of vertices. m is the # of edges.
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The fundamental problem: Finding a min-cut

• Naive:

λ(G ) = min
s,t∈V

λ(G , s, t)

Find min-st-cuts over all s, t ∈ V .(n
2

)
max flows . Max flow takes O(mn) time [Orlin 2013]

= O(n3m)

• Smarter:

λ(G ) = min
t∈V

λ(G , s, t)

Fix s ∈ V , find min-st-cut over all t ∈ V .

n − 1 max flows = O(n2m)

• Fastest known:

λ(G ) = min(λ(G , s, t), λ(G/st))

O(nm + n2 log n) [Nagamochi & Ibaraki 1992]
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The min-cut algorithm

Recurrence relation

λ(G ) = min(λ(G , s, t), λ(G/st))

Algorithm MinCut(G):

1. Find a min-st-cut for some s, t ∈ V .

2. Find MinCut(G/st).

3. Return the min of the two.

• n − 1 calls to MinCut.

• n − 1 max flow computation.

• O(n2m) again.

• How to improve this?
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Find a min-st-cut

Find a min-st-cut for some s, t ∈ V .
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Find a min-st-cut

Find a min-st-cut for some s, t ∈ V .

• Aim: pick s and t, where the max st-flow can be computed

quickly.

• How? maximum adjacency ordering.
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Adjacency

d(A,B) =
∑

e∈δ(A)∩δ(B)

w(e)

v1, . . . , vn is a maximum adjacency ordering(MA-ordering) if for all

1 ≤ i ≤ j ≤ n,

d({v1, . . . , vi−1} , vi ) ≥ d({v1, . . . , vi−1} , vj).

v1v1

v2v2

v3v3

v4v4 v5v5

v6v6

v1v1 v2v2 v3v3v1v1 v1v1 v2v2
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d({v1, . . . , vi−1} , vi ) ≥ d({v1, . . . , vi−1} , vj)

v1v1

v2v2

v3v3

v4v4 v5v5

v6v6

v6v6

v1v1 v2v2 v3v3 v4v4 v1v1 v2v2 v3v3 v4v4 v5v5

v1v1 v2v2 v3v3 v4v4 v5v5

MA-ordering can be found in O(m + n log n) time.
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{vn} forms a min vn−1vn-cut.

Lemma ([Arikati & Mehlhorn 1999])

Given graph G = (V ,E ) and MA ordering v1, . . . , vn. A max

vn−1vn-flow can be found in O(m) time.

A min-cut of a graph can be found in n − 1 × MA-ordering, so

O(nm + n2 log n) time.
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What about hypergraphs?

• The exact same algorithm works for hypergraphs.

• Different ordering:

• MA ordering [Klimmek & Wagner 1996]

• Tight ordering [Mak & Wong 2000]

• Queyranne ordering [Queyranne 1998]

15



Finding ALL min-cuts

What is the desired output?

• List all min-cuts? Can there be too many min-cuts? No.

There are at most
(n
2

)
min-cuts. [Karger 1993]

• O(n3) space sufficient: (S ,V \ S) requires min(|S |, |V \ S |)
space.

• Ω(n3) space required: a cycle, space usage
∑n/2

i=1 ni = Ω(n3).
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Finding ALL min-cuts: desirable properties

Find a data structure:

• Small: size is smaller than listing all min-cuts.

• Simple: the structure is simple, so one can query the data

structure quickly.

enumeration, counting, filtering...

The best kind of data structure: a smaller, simple graph with the

same min-cut structure.
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Representation

G ′ = (V ′,E ′) is a representation of G = (V ,E ) if there exist a

function φ : V → V ′, such that

• S is a min-cut in G , then φ(S) is a min-cut in G ′.

• S ′ is a min-cut in G ′, then φ−1(S ′) is a min-cut in G .

GG G0G0
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Cactus

A graph is called a cactus if no two cycles share an edge.

Every graph has a cactus representation. [Karzanov & Timofeev 1986]
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Cactus representation: Algorithms, a long history

Large number of work

• O(mn log(n2/m)) [Gabow 1993]

• O(mn + n2 log n + n∗m log n) [Nagamochi & Kameda 1996]

(n∗ is # of vertices in the representation)

• O(mn + n2 log n + γm log n) [Nagamochi, Nakao, Ibaraki 2000]

(γ is # of cycles in the representation)

• O(mn + n2 log n) [Nagamochi, Nakamura, Ishii 2003]
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Cactus representation: The state of the art

An edge e is critical, if e crosses a min-cut.

Theorem ([Nagamochi & Kameda 1996])

If st is an critical edge, then there exists a partition {V1, . . . ,Vk}
of V , such that

{⋃j
i=1 Vi |1 ≤ j < k

}
are the set of min-st-cuts.

ss

V1V1 V2V2 V3V3 V4V4

tt

Can be found in O(m + n log n) time: MA-ordering.

21



Cactus representation: Previous method

The partition give us a partial cactus.

Algorithm ALL-MinCut(G):

1. A← cactus of all min-st-cut for some critical edge st.

2. B ← ALL-MinCut(G/st).

3. Cleverly combine cactus A and B into a cactus for G .

Running time=n − 1× MA ordering, same as finding a single

min-cut.

22



Why is the algorithm unsatisfactory

• Complicated

• Does not generalize to hypergraphs.
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Finding cactus representation for

graphs



Our approach: a new algorithm

The decomposition framework [Fujishige 1983, Cunningham 1983].

• decompose the graph to structurally simple graphs.

• preserves information on min-cuts, and might lose information

on other cuts. Exactly what we need.

Remark: Decomposition framework actually handles all
(symmetric) submodular functions ([Fujishige 1983]) [Cunningham

1983].
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Decomposition: Refinement

A min-cut with at least two vertices on each side is called a split.

Definition

Given a graph G , {G1,G2} is a refinement of G if G1 and G2 are

graphs obtained through a split (V1,V2) and a new marker vertex

x as follows.

1. G1 is G/V2, such that V2 gets contracted to x .

2. G2 is G/V1, such that V1 gets contracted to x .

25



Example of a refinement

V2V2V1V1

HH

H1H1 H2H2

xx xx

26



Decomposition

Definition

A set of graphs D = {G1, . . . ,Gk} is a decomposition of G if it is

obtained from {G} by replacing an element by its refinements.

Two decomposition are equivalent if they are the same up to

relabeling marker vertices.
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Crossing

Two cuts (A,V \ A) and (B,V \ B) are crossing if A ∩ B, A \ B
and B \ A are all non-empty.

BB

AA AABB

V \ BV \ B

V \ AV \ A

If (A,V \ A) and (B,V \ B) are non-crossing, then contract A or

B preserves the other cut.

A split is good if no min-cut crosses it.

28



Refinement preserves cuts

V2V2V1V1

HH

H1H1 H2H2

xx xx

The min-cut in H1 and H2 are the min-cuts in H.
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Refine through good splits preserves all

min-cuts.

29



Definition

A graph G is prime if it does not contain any split.

30



Good splits and cycles

There exist graphs that are not prime but have no good splits.

Theorem

A graph without any good split is either a prime or a cycle.
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Standard decomposition

A decomposition consists of primes and cycles is called a standard

decomposition.

Observation: Any refinement of a standard decomposition is a

standard decomposition.

A standard decomposition is minimal, if it is not a refinement of

any other standard decomposition.
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Canonical decomposition

Theorem ([Fujishige 1983,Cunningham 1983])

There exist a unique minimal standard decomposition.

Such decomposition is called the canonical decomposition.

Canonical decomposition is what we want: obtained through only

applying good splits.

Standard

Canonical

GG

33



Properties of the canonical decomposition

• Obtained through refinement applied to good splits.

• Consists of only primes and cycles.

• Recover a cactus representation from a canonical

decomposition is easy: O(n) time. [Cheng 1999]

New Goal: Find the canonical decomposition.
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Algorithm, first attempt

1. Find a good split.

2. Produce a refinement {G1,G2} using the good split.

3. Recurse on G1 and G2.

Algorithm running time are dominated by finding O(n) good splits.

Finding a good split is no easier than finding a min-cut.
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Standard

Canonical
good

good

good

good

Standard

GG
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Canonical

Standard

GG
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Algorithm, second attempt

Merge: {G1, . . . ,Gk} a decomposition of G , G1 and G2 shares a

marker vertex. Find a decomposition {G ′,G3, . . . ,Gk} of G , where

{G1,G2} is a refinement of G ′.

1. Find any standard decomposition.

2. Merge elements in the decomposition while maintaining a

standard decomposition.

Second operation is O(nm) time:

1. Inspect each marker vertex (O(n) of them)

2. Check if merge maintains a standard decomposition. Easy: Is

the new graph a cycle?

New Goal: Find a standard decomposition.
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How to find a standard decomposition

Idea: We don’t have to always apply refinement all the time. Any

progress is fine.

For fixed s, t ∈ V , either there is a split that separates s and

t(called a st-split). Or we can contract s and t.

39



How to find a standard decomposition

Idea: We don’t have to always apply refinement all the time. Any

progress is fine.

For fixed s, t ∈ V , either there is a split that separates s and

t(called a st-split). Or we can contract s and t.

39



Split oracle

Problem

Given G and the min-cut value λ, outputs either a split in G or a

pair of vertices {s, t} such that there is no st-split in G .

An algorithm solve the above problem is called a split oracle.

If we have a fast split oracle, then we can solve the problem.

1. Apply the split oracle on G .

2. If the oracle returns a split, find a refinement of H and recurse

on both sides.

3. Otherwise, the oracle output a pair s, t. Contract s and t and

recurse.
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Implement a split oracle

Theorem

A split oracle can be implemented in O(m + n log n) time.

Sketch

• Use MA-ordering to find a max st-flow for some s and t.

• Enumerate at most 3 min st-cuts using the maximum flow. It

either finds a split or decide there is none. [Provan & Shier 1996]
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The reductions

1. cactus representation:

O(m)+ finding the canonical

decomposition.

2. canonical decomposition: O(nm)+finding a standard

decomposition

3. standard decomposition: O(nm) + O(n) × split oracle

4. split oracle: MA-ordering O(m + n log n).

Total running time: O(nm + n2 log n). Same as finding a single

min-cut.
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What about hypergraphs?

Our algorithm almost work for hypergraphs. Just a few small

changes.

1. We need to use tight ordering instead of MA-ordering.

2. There are non-cycles that also doesn’t have any good split.

3. Cactus is not the right representation.
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Modification 1: Tight adjacency and tight ordering

d ′(A,B) =
∑

e∈δ(A)∩δ(B)
e⊆A∪B

w(e)

d0(A, B) = 1d0(A, B) = 1

AA BB

v1, . . . , vn is a tight ordering(MA ordering) if for all 1 ≤ i ≤ j ≤ n,

d ′({v1, . . . , vi−1} , vi ) ≥ d ′({v1, . . . , vi−1} , vj).
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Modification 2: Solid polygons

A hypergraph is a solid polygon if it consist of a (possibly 0

weight) cycle and a (possibly 0 weight) hyperedge covering all

vertices.

Hypergraphs with no good splits are either primes or solid

polygons. A standard decomposition consist of primes and solid

polygons.
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Modification 3: Hypercactus

Definition

A hypergraph is called a hypercactus if it can be obtained through

the following operations from a cactus: Split the edges incident to

a star, and “blow up” the vertex into a hyperedge.

v1v1

v2v2 v3v3

v1v1

v2v2 v3v3

vv

x1x1

x2x2 x3x3
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Modification 3: Hypercactus Example
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Modification 3: Hypercactus representation

Theorem ([Cheng 1999, Fleiner & Jordán 1999])

Every hypergraph have a hypercactus representation.

Remark: Fleiner & Jordán actually showed there is a hypercactus

representation for all symmetric submodular functions.
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Conclusion

All hypergraph min-cuts can be computed in the same running

time as finding a single min-cut.
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Thank you!
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