Computing min-cuts in hypergraphs

Chandra Chekuri and Chao Xu
July 18, 2017
University of Illinois, Urbana-Champaign

A hypergraph

A graph $G=(V, E)$ consists of vertices V and edges $E \subset\{\{u, v\} \mid u, v \in V\}$.

A hypergraph

A graph $G=(V, E)$ consists of vertices V and edges
$E \subset\{\{u, v\} \mid u, v \in V\}$.
A hypergraph $H=(V, E)$ consists of vertices V and edges $E \subset\{U|U \subset V,|U| \geq 2\}$.

A hypergraph

A graph $G=(V, E)$ consists of vertices V and edges
$E \subset\{\{u, v\} \mid u, v \in V\}$.
A hypergraph $H=(V, E)$ consists of vertices V and edges $E \subset\{U|U \subset V,|U| \geq 2\}$.

Each edge is assigned with a positive weight $w: E \rightarrow \mathbb{R}_{+}$.

Cut function

- Edge $e \in E$ crosses $S \subset V$, if $e \cap S$ and $e \cap V \backslash S$ are both non-empty.
- $\delta(S)$ is the set of all edges cross S.
- The cut function $c: 2^{V} \rightarrow \mathbb{R}_{+}$

$$
c(S)=\sum_{e \in \delta(S)} w(e)
$$

Cuts and min-cuts

- A cut is a bipartition of the vertices $(S, V \backslash S)$. We also call the set S a cut.

Cuts and min-cuts

- A cut is a bipartition of the vertices $(S, V \backslash S)$. We also call the set S a cut.
- A cut S is a (global) min-cut if $c(S)$ is minimized. It's value is denoted as $\lambda(G)$.

Cuts and min-cuts

- A cut is a bipartition of the vertices $(S, V \backslash S)$. We also call the set S a cut.
- A cut S is a (global) min-cut if $c(S)$ is minimized. It's value is denoted as $\lambda(G)$.
- A cut S a st-cut, if $s \in S$ and $t \in V \backslash S$.

Cuts and min-cuts

- A cut is a bipartition of the vertices $(S, V \backslash S)$. We also call the set S a cut.
- A cut S is a (global) min-cut if $c(S)$ is minimized. It's value is denoted as $\lambda(G)$.
- A cut S a st-cut, if $s \in S$ and $t \in V \backslash S$.
- The max-flow min-cut theorem is relates max-st-flow with min-st-cut (also called local min-cuts). It's value is denoted as $\lambda(G, s, t)$.

Why min-cut?

The value of min-cut measures the connectivity of the graph.
Hence min-cuts are useful in clustering and combinatorial optimization.

- disconnect railway networks

Why min-cut?

The value of min-cut measures the connectivity of the graph.
Hence min-cuts are useful in clustering and combinatorial optimization.

- disconnect railway networks
- image segmentation

Why min-cut?

The value of min-cut measures the connectivity of the graph.
Hence min-cuts are useful in clustering and combinatorial optimization.

- disconnect railway networks
- image segmentation
- graph partitioning

Why min-cut?

The value of min-cut measures the connectivity of the graph.
Hence min-cuts are useful in clustering and combinatorial optimization.

- disconnect railway networks
- image segmentation
- graph partitioning
- useful constraints for traveling salesman problem

Why min-cut?

The value of min-cut measures the connectivity of the graph.
Hence min-cuts are useful in clustering and combinatorial optimization.

- disconnect railway networks
- image segmentation
- graph partitioning
- useful constraints for traveling salesman problem

Why all min-cuts?

- Reinforce railway networks

Why all min-cuts?

- Reinforce railway networks edge connectivity augmentation [Gabow 1991; Naor, Gusfield, Martel 1997]

Why all min-cuts?

- Reinforce railway networks edge connectivity augmentation [Gabow 1991; Naor, Gusfield, Martel 1997]
- data security [Kao 1996]

Why all min-cuts?

- Reinforce railway networks edge connectivity augmentation [Gabow 1991; Naor, Gusfield, Martel 1997]
- data security [Kao 1996]
- graph drawing [Kant 1993]

Why all min-cuts?

- Reinforce railway networks edge connectivity augmentation [Gabow 1991; Naor, Gusfield, Martel 1997]
- data security [Kao 1996]
- graph drawing [Kant 1993]
- edge splitting [Nagamochi, Nakamura, Ibaraki 2000]

Outline

Our contribution: a deterministic algorithm that finds ALL min-cut in a hypergraph in the same running time as finding a single min-cut.

Outline

Our contribution: a deterministic algorithm that finds ALL min-cut in a hypergraph in the same running time as finding a single min-cut.

- How to find a single min-cut in a graph?

Outline

Our contribution: a deterministic algorithm that finds ALL min-cut in a hypergraph in the same running time as finding a single min-cut.

- How to find a single min-cut in a graph?
- What do we mean by ALL min-cuts and how did we find them?

Outline

Our contribution: a deterministic algorithm that finds ALL min-cut in a hypergraph in the same running time as finding a single min-cut.

- How to find a single min-cut in a graph?
- What do we mean by ALL min-cuts and how did we find them?
- A new algorithm for finding ALL min-cuts in graphs.

Outline

Our contribution: a deterministic algorithm that finds ALL min-cut in a hypergraph in the same running time as finding a single min-cut.

- How to find a single min-cut in a graph?
- What do we mean by ALL min-cuts and how did we find them?
- A new algorithm for finding ALL min-cuts in graphs.
- How to modify the algorithm to work for hypergraphs?
n is the \# of vertices. m is the \# of edges.

The fundamental problem: Finding a min-cut

- Naive:

$$
\lambda(G)=\min _{s, t \in V} \lambda(G, s, t)
$$

The fundamental problem: Finding a min-cut

- Naive:

$$
\lambda(G)=\min _{s, t \in V} \lambda(G, s, t)
$$

Find min-st-cuts over all $s, t \in V$.
$\binom{n}{2}$ max flows. Max flow takes $O(m n)$ time [Orlin 2013]
$=O\left(n^{3} m\right)$

The fundamental problem: Finding a min-cut

- Naive:

$$
\lambda(G)=\min _{s, t \in V} \lambda(G, s, t)
$$

Find min-st-cuts over all $s, t \in V$.
$\binom{n}{2}$ max flows. Max flow takes $O(m n)$ time [Orlin 2013]
$=O\left(n^{3} m\right)$

- Smarter:

$$
\lambda(G)=\min _{t \in V} \lambda(G, s, t)
$$

The fundamental problem: Finding a min-cut

- Naive:

$$
\lambda(G)=\min _{s, t \in V} \lambda(G, s, t)
$$

Find min-st-cuts over all $s, t \in V$.
$\binom{n}{2}$ max flows. Max flow takes $O(m n)$ time [Orlin 2013]
$=O\left(n^{3} m\right)$

- Smarter:

$$
\lambda(G)=\min _{t \in V} \lambda(G, s, t)
$$

Fix $s \in V$, find min-st-cut over all $t \in V$.
$n-1$ max flows $=O\left(n^{2} m\right)$

The fundamental problem: Finding a min-cut

- Naive:

$$
\lambda(G)=\min _{s, t \in V} \lambda(G, s, t)
$$

Find min-st-cuts over all $s, t \in V$.
$\binom{n}{2}$ max flows. Max flow takes $O(m n)$ time [Orlin 2013]
$=O\left(n^{3} m\right)$

- Smarter:

$$
\lambda(G)=\min _{t \in V} \lambda(G, s, t)
$$

Fix $s \in V$, find min-st-cut over all $t \in V$.
$n-1$ max flows $=O\left(n^{2} m\right)$

- Fastest known:

$$
\lambda(G)=\min (\lambda(G, s, t), \lambda(G / s t))
$$

$O\left(n m+n^{2} \log n\right)$ [Nagamochi \& Ibaraki 1992]

The min-cut algorithm

Recurrence relation

$$
\lambda(G)=\min (\lambda(G, s, t), \lambda(G / s t))
$$

The min-cut algorithm

Recurrence relation

$$
\lambda(G)=\min (\lambda(G, s, t), \lambda(G / s t))
$$

Algorithm MinCut(G):

1. Find a min-st-cut for some $s, t \in V$.
2. Find $\operatorname{MinCut}(G / s t)$.
3. Return the min of the two.

The min-cut algorithm

Recurrence relation

$$
\lambda(G)=\min (\lambda(G, s, t), \lambda(G / s t))
$$

Algorithm MinCut(G):

1. Find a min-st-cut for some $s, t \in V$.
2. Find $\operatorname{MinCut}(G / s t)$.
3. Return the min of the two.

- $n-1$ calls to MinCut.

The min-cut algorithm

Recurrence relation

$$
\lambda(G)=\min (\lambda(G, s, t), \lambda(G / s t))
$$

Algorithm MinCut(G):

1. Find a min-st-cut for some $s, t \in V$.
2. Find $\operatorname{MinCut}(G / s t)$.
3. Return the min of the two.

- $n-1$ calls to MinCut.
- $n-1$ max flow computation.

The min-cut algorithm

Recurrence relation

$$
\lambda(G)=\min (\lambda(G, s, t), \lambda(G / s t))
$$

Algorithm MinCut(G):

1. Find a min-st-cut for some $s, t \in V$.
2. Find $\operatorname{MinCut}(G / s t)$.
3. Return the min of the two.

- $n-1$ calls to MinCut.
- $n-1$ max flow computation.
- $O\left(n^{2} m\right)$ again.
- How to improve this?

Find a min-st-cut

Find a min-st-cut for some $s, t \in V$.

Find a min-st-cut

Find a min-st-cut for some $s, t \in V$.

Find a min-st-cut

Find a min-st-cut for some $s, t \in V$.

Find a min-st-cut

Find a min-st-cut for some $s, t \in V$.

- Aim: pick s and t, where the max st-flow can be computed quickly.

Find a min-st-cut

Find a min-st-cut for some $s, t \in V$.

- Aim: pick s and t, where the max st-flow can be computed quickly.
- How?

Find a min-st-cut

Find a min-st-cut for some $s, t \in V$.

- Aim: pick s and t, where the max st-flow can be computed quickly.
- How? maximum adjacency ordering.

Adjacency

$$
d(A, B)=\sum_{e \in \delta(A) \cap \delta(B)} w(e)
$$

Adjacency

$$
d(A, B)=\sum_{e \in \delta(A) \cap \delta(B)} w(e)
$$

v_{1}, \ldots, v_{n} is a maximum adjacency ordering(MA-ordering) if for all $1 \leq i \leq j \leq n$,

$$
d\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{i}\right) \geq d\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{j}\right)
$$

Adjacency

$$
d(A, B)=\sum_{e \in \delta(A) \cap \delta(B)} w(e)
$$

v_{1}, \ldots, v_{n} is a maximum adjacency ordering(MA-ordering) if for all $1 \leq i \leq j \leq n$,

$$
d\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{i}\right) \geq d\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{j}\right)
$$

v_{1}
v_{2}
v_{1}
v_{2}
v_{3}

$$
d\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{i}\right) \geq d\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{j}\right)
$$

$$
d\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{i}\right) \geq d\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{j}\right)
$$

MA-ordering can be found in $O(m+n \log n)$ time.
$\left\{v_{n}\right\}$ forms a $\min v_{n-1} v_{n}$-cut.
$\left\{v_{n}\right\}$ forms a $\min v_{n-1} v_{n}$-cut.
Lemma ([Arikati \& Mehihorn 1999])
Given graph $G=(V, E)$ and $M A$ ordering v_{1}, \ldots, v_{n}. A max $v_{n-1} v_{n}$-flow can be found in $O(m)$ time.

A min-cut of a graph can be found in $n-1 \times$ MA-ordering, so $O\left(n m+n^{2} \log n\right)$ time.

What about hypergraphs?

- The exact same algorithm works for hypergraphs.
- Different ordering:
- MA ordering [Klimmek \& Wagner 1996]
- Tight ordering [Mak \& Wong 2000]
- Queyranne ordering [Queyranne 1998]

Finding ALL min-cuts

Finding ALL min-cuts

What is the desired output?

- List all min-cuts?

Finding ALL min-cuts

What is the desired output?

- List all min-cuts? Can there be too many min-cuts?

Finding ALL min-cuts

What is the desired output?

- List all min-cuts? Can there be too many min-cuts? No. There are at most $\binom{n}{2}$ min-cuts. [Karger 1993]

Finding ALL min-cuts

What is the desired output?

- List all min-cuts? Can there be too many min-cuts? No. There are at most $\binom{n}{2}$ min-cuts. [Karger 1993]
- $O\left(n^{3}\right)$ space sufficient: $(S, V \backslash S)$ requires $\min (|S|,|V \backslash S|)$ space.

Finding ALL min-cuts

What is the desired output?

- List all min-cuts? Can there be too many min-cuts? No. There are at most $\binom{n}{2}$ min-cuts. [Karger 1993]
- $O\left(n^{3}\right)$ space sufficient: $(S, V \backslash S)$ requires $\min (|S|,|V \backslash S|)$ space.
- $\Omega\left(n^{3}\right)$ space required: a cycle, space usage $\sum_{i=1}^{n / 2} n i=\Omega\left(n^{3}\right)$.

Finding ALL min-cuts: desirable properties

Find a data structure:

- Small: size is smaller than listing all min-cuts.
- Simple: the structure is simple, so one can query the data structure quickly.

Finding ALL min-cuts: desirable properties

Find a data structure:

- Small: size is smaller than listing all min-cuts.
- Simple: the structure is simple, so one can query the data structure quickly. enumeration, counting, filtering...

Finding ALL min-cuts: desirable properties

Find a data structure:

- Small: size is smaller than listing all min-cuts.
- Simple: the structure is simple, so one can query the data structure quickly. enumeration, counting, filtering...

The best kind of data structure: a smaller, simple graph with the same min-cut structure.

Representation

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a representation of $G=(V, E)$ if there exist a function $\phi: V \rightarrow V^{\prime}$, such that

- S is a min-cut in G, then $\phi(S)$ is a min-cut in G^{\prime}.
- S^{\prime} is a min-cut in G^{\prime}, then $\phi^{-1}\left(S^{\prime}\right)$ is a min-cut in G.

Cactus

A graph is called a cactus if no two cycles share an edge.

Cactus

A graph is called a cactus if no two cycles share an edge.

Every graph has a cactus representation. [Karzanov \& Timofeev 1986]

Cactus representation: Algorithms, a long history

Large number of work

- $O\left(m n \log \left(n^{2} / m\right)\right)$ [Gabow 1993]
- $O\left(m n+n^{2} \log n+n^{*} m \log n\right)$ [Nagamochi \& Kameda 1996] (n^{*} is \# of vertices in the representation)
- $O\left(m n+n^{2} \log n+\gamma m \log n\right)$ [Nagamochi, Nakao, Ibaraki 2000] (γ is \# of cycles in the representation)
- $O\left(m n+n^{2} \log n\right)$ [Nagamochi, Nakamura, Ishii 2003]

Cactus representation: The state of the art

An edge e is critical, if e crosses a min-cut.
Theorem ([Nagamochi \& Kameda 1996])
If st is an critical edge, then there exists a partition $\left\{V_{1}, \ldots, V_{k}\right\}$ of V, such that $\left\{\bigcup_{i=1}^{j} V_{i} \mid 1 \leq j<k\right\}$ are the set of min-st-cuts.

Can be found in $O(m+n \log n)$ time: MA-ordering.

Cactus representation: Previous method

The partition give us a partial cactus.
Algorithm ALL-MinCut(G):

1. $A \leftarrow$ cactus of all min-st-cut for some critical edge st.
2. $B \leftarrow \operatorname{ALL}-\operatorname{MinCut}(G / s t)$.
3. Cleverly combine cactus A and B into a cactus for G.

Running time $=n-1 \times$ MA ordering, same as finding a single min-cut.

Why is the algorithm unsatisfactory

- Complicated

Why is the algorithm unsatisfactory

- Complicated
- Does not generalize to hypergraphs.

Finding cactus representation for graphs

Our approach: a new algorithm

The decomposition framework [Fujishige 1983, Cunningham 1983].

Our approach: a new algorithm

The decomposition framework [Fujishige 1983, Cunningham 1983].

- decompose the graph to structurally simple graphs.

Our approach: a new algorithm

The decomposition framework [Fujishige 1983, Cunningham 1983].

- decompose the graph to structurally simple graphs.
- preserves information on min-cuts, and might lose information on other cuts.

Our approach: a new algorithm

The decomposition framework [Fujishige 1983, Cunningham 1983].

- decompose the graph to structurally simple graphs.
- preserves information on min-cuts, and might lose information on other cuts. Exactly what we need.

Our approach: a new algorithm

The decomposition framework [Fujishige 1983, Cunningham 1983].

- decompose the graph to structurally simple graphs.
- preserves information on min-cuts, and might lose information on other cuts. Exactly what we need.

Remark: Decomposition framework actually handles all (symmetric) submodular functions ([Fujishige 1983]) [Cunningham 1983].

Decomposition: Refinement

A min-cut with at least two vertices on each side is called a split.
Definition
Given a graph $G,\left\{G_{1}, G_{2}\right\}$ is a refinement of G if G_{1} and G_{2} are graphs obtained through a split $\left(V_{1}, V_{2}\right)$ and a new marker vertex x as follows.

1. G_{1} is G / V_{2}, such that V_{2} gets contracted to x.
2. G_{2} is G / V_{1}, such that V_{1} gets contracted to x.

Example of a refinement

Decomposition

Definition

A set of graphs $\mathcal{D}=\left\{G_{1}, \ldots, G_{k}\right\}$ is a decomposition of G if it is obtained from $\{G\}$ by replacing an element by its refinements.

Two decomposition are equivalent if they are the same up to relabeling marker vertices.

Crossing

Two cuts $(A, V \backslash A)$ and $(B, V \backslash B)$ are crossing if $A \cap B, A \backslash B$ and $B \backslash A$ are all non-empty.

$$
V \backslash B
$$

If $(A, V \backslash A)$ and $(B, V \backslash B)$ are non-crossing, then contract A or B preserves the other cut.

A split is good if no min-cut crosses it.

Refinement preserves cuts

Refinement preserves cuts

The min-cut in H_{1} and H_{2} are the min-cuts in H.

Refine through good splits preserves all min-cuts.

Definition

A graph G is prime if it does not contain any split.

Good splits and cycles

There exist graphs that are not prime but have no good splits.

Theorem
A graph without any good split is either a prime or a cycle.

Standard decomposition

A decomposition consists of primes and cycles is called a standard decomposition.

Standard decomposition

A decomposition consists of primes and cycles is called a standard decomposition.

Observation: Any refinement of a standard decomposition is a standard decomposition.

Standard decomposition

A decomposition consists of primes and cycles is called a standard decomposition.

Observation: Any refinement of a standard decomposition is a standard decomposition.

A standard decomposition is minimal, if it is not a refinement of any other standard decomposition.

Canonical decomposition

Theorem ([Fujishige 1983,Cunningham 1983])
There exist a unique minimal standard decomposition.
Such decomposition is called the canonical decomposition.
Canonical decomposition is what we want: obtained through only applying good splits.

Properties of the canonical decomposition

Properties of the canonical decomposition

- Obtained through refinement applied to good splits.

Properties of the canonical decomposition

- Obtained through refinement applied to good splits.
- Consists of only primes and cycles.

Properties of the canonical decomposition

- Obtained through refinement applied to good splits.
- Consists of only primes and cycles.
- Recover a cactus representation from a canonical decomposition is easy: $O(n)$ time. [Cheng 1999]

Properties of the canonical decomposition

- Obtained through refinement applied to good splits.
- Consists of only primes and cycles.
- Recover a cactus representation from a canonical decomposition is easy: $O(n)$ time. [Cheng 1999]

New Goal: Find the canonical decomposition.

Algorithm, first attempt

1. Find a good split.
2. Produce a refinement $\left\{G_{1}, G_{2}\right\}$ using the good split.
3. Recurse on G_{1} and G_{2}.

Algorithm, first attempt

1. Find a good split.
2. Produce a refinement $\left\{G_{1}, G_{2}\right\}$ using the good split.
3. Recurse on G_{1} and G_{2}.

Algorithm running time are dominated by finding $O(n)$ good splits.
Finding a good split is no easier than finding a min-cut.

Algorithm, second attempt

Merge: $\left\{G_{1}, \ldots, G_{k}\right\}$ a decomposition of G, G_{1} and G_{2} shares a marker vertex. Find a decomposition $\left\{G^{\prime}, G_{3}, \ldots, G_{k}\right\}$ of G, where $\left\{G_{1}, G_{2}\right\}$ is a refinement of G^{\prime}.

Algorithm, second attempt

Merge: $\left\{G_{1}, \ldots, G_{k}\right\}$ a decomposition of G, G_{1} and G_{2} shares a marker vertex. Find a decomposition $\left\{G^{\prime}, G_{3}, \ldots, G_{k}\right\}$ of G, where $\left\{G_{1}, G_{2}\right\}$ is a refinement of G^{\prime}.

1. Find any standard decomposition.
2. Merge elements in the decomposition while maintaining a standard decomposition.

Algorithm, second attempt

Merge: $\left\{G_{1}, \ldots, G_{k}\right\}$ a decomposition of G, G_{1} and G_{2} shares a marker vertex. Find a decomposition $\left\{G^{\prime}, G_{3}, \ldots, G_{k}\right\}$ of G, where $\left\{G_{1}, G_{2}\right\}$ is a refinement of G^{\prime}.

1. Find any standard decomposition.
2. Merge elements in the decomposition while maintaining a standard decomposition.

Second operation is $O(n m)$ time:

1. Inspect each marker vertex

Algorithm, second attempt

Merge: $\left\{G_{1}, \ldots, G_{k}\right\}$ a decomposition of G, G_{1} and G_{2} shares a marker vertex. Find a decomposition $\left\{G^{\prime}, G_{3}, \ldots, G_{k}\right\}$ of G, where $\left\{G_{1}, G_{2}\right\}$ is a refinement of G^{\prime}.

1. Find any standard decomposition.
2. Merge elements in the decomposition while maintaining a standard decomposition.

Second operation is $O(n m)$ time:

1. Inspect each marker vertex $(O(n)$ of them $)$
2. Check if merge maintains a standard decomposition.

Algorithm, second attempt

Merge: $\left\{G_{1}, \ldots, G_{k}\right\}$ a decomposition of G, G_{1} and G_{2} shares a marker vertex. Find a decomposition $\left\{G^{\prime}, G_{3}, \ldots, G_{k}\right\}$ of G, where $\left\{G_{1}, G_{2}\right\}$ is a refinement of G^{\prime}.

1. Find any standard decomposition.
2. Merge elements in the decomposition while maintaining a standard decomposition.

Second operation is $O(n m)$ time:

1. Inspect each marker vertex $(O(n)$ of them $)$
2. Check if merge maintains a standard decomposition. Easy: Is the new graph a cycle?

Algorithm, second attempt

Merge: $\left\{G_{1}, \ldots, G_{k}\right\}$ a decomposition of G, G_{1} and G_{2} shares a marker vertex. Find a decomposition $\left\{G^{\prime}, G_{3}, \ldots, G_{k}\right\}$ of G, where $\left\{G_{1}, G_{2}\right\}$ is a refinement of G^{\prime}.

1. Find any standard decomposition.
2. Merge elements in the decomposition while maintaining a standard decomposition.

Second operation is $O(n m)$ time:

1. Inspect each marker vertex $(O(n)$ of them $)$
2. Check if merge maintains a standard decomposition. Easy: Is the new graph a cycle?

New Goal: Find a standard decomposition.

How to find a standard decomposition

Idea: We don't have to always apply refinement all the time. Any progress is fine.

How to find a standard decomposition

Idea: We don't have to always apply refinement all the time. Any progress is fine.

For fixed $s, t \in V$, either there is a split that separates s and t (called a st-split). Or we can contract s and t.

Split oracle

Problem

Given G and the min-cut value λ, outputs either a split in G or a pair of vertices $\{s, t\}$ such that there is no st-split in G.

An algorithm solve the above problem is called a split oracle.

Split oracle

Problem

Given G and the min-cut value λ, outputs either a split in G or a pair of vertices $\{s, t\}$ such that there is no st-split in G.

An algorithm solve the above problem is called a split oracle.
If we have a fast split oracle, then we can solve the problem.

1. Apply the split oracle on G.
2. If the oracle returns a split, find a refinement of H and recurse on both sides.
3. Otherwise, the oracle output a pair s, t. Contract s and t and recurse.

Implement a split oracle

Theorem

A split oracle can be implemented in $O(m+n \log n)$ time.
Sketch

- Use MA-ordering to find a max st-flow for some s and t.
- Enumerate at most 3 min st-cuts using the maximum flow. It either finds a split or decide there is none. [Provan \& Shier 1996]

The reductions

1. cactus representation:

The reductions

1. cactus representation: $O(m)+$ finding the canonical decomposition.

The reductions

1. cactus representation: $O(m)+$ finding the canonical decomposition.
2. canonical decomposition:

The reductions

1. cactus representation: $O(m)+$ finding the canonical decomposition.
2. canonical decomposition: $O(n m)+$ finding a standard decomposition

The reductions

1. cactus representation: $O(m)+$ finding the canonical decomposition.
2. canonical decomposition: $O(n m)+$ finding a standard decomposition
3. standard decomposition:

The reductions

1. cactus representation: $O(m)+$ finding the canonical decomposition.
2. canonical decomposition: $O(n m)+$ finding a standard decomposition
3. standard decomposition: $O(n m)+O(n) \times$ split oracle

The reductions

1. cactus representation: $O(m)+$ finding the canonical decomposition.
2. canonical decomposition: $O(n m)+$ finding a standard decomposition
3. standard decomposition: $O(n m)+O(n) \times$ split oracle
4. split oracle:

The reductions

1. cactus representation: $O(m)+$ finding the canonical decomposition.
2. canonical decomposition: $O(n m)+$ finding a standard decomposition
3. standard decomposition: $O(n m)+O(n) \times$ split oracle
4. split oracle: MA-ordering $O(m+n \log n)$.

The reductions

1. cactus representation: $O(m)+$ finding the canonical decomposition.
2. canonical decomposition: $O(n m)+$ finding a standard decomposition
3. standard decomposition: $O(n m)+O(n) \times$ split oracle
4. split oracle: MA-ordering $O(m+n \log n)$.

Total running time: $O\left(n m+n^{2} \log n\right)$.

The reductions

1. cactus representation: $O(m)+$ finding the canonical decomposition.
2. canonical decomposition: $O(n m)+$ finding a standard decomposition
3. standard decomposition: $O(n m)+O(n) \times$ split oracle
4. split oracle: MA-ordering $O(m+n \log n)$.

Total running time: $O\left(n m+n^{2} \log n\right)$. Same as finding a single min-cut.

What about hypergraphs?

Our algorithm almost work for hypergraphs. Just a few small changes.

1. We need to use tight ordering instead of MA-ordering.
2. There are non-cycles that also doesn't have any good split.
3. Cactus is not the right representation.

Modification 1: Tight adjacency and tight ordering

$$
d^{\prime}(A, B)=\sum_{\substack{e \in \delta(A) \cap \delta(B) \\ e \subseteq A \cup B}} w(e)
$$

$$
\begin{array}{ll}
A & B
\end{array}
$$

Modification 1: Tight adjacency and tight ordering

$$
d^{\prime}(A, B)=\sum_{\substack{e \in \delta(A) \cap \delta(B) \\ e \subseteq A \cup B}} w(e)
$$

$$
A \quad B
$$

v_{1}, \ldots, v_{n} is a tight ordering(MA ordering) if for all $1 \leq i \leq j \leq n$,

$$
d^{\prime}\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{i}\right) \geq d^{\prime}\left(\left\{v_{1}, \ldots, v_{i-1}\right\}, v_{j}\right)
$$

Modification 2: Solid polygons

A hypergraph is a solid polygon if it consist of a (possibly 0 weight) cycle and a (possibly 0 weight) hyperedge covering all vertices.

Modification 2: Solid polygons

A hypergraph is a solid polygon if it consist of a (possibly 0 weight) cycle and a (possibly 0 weight) hyperedge covering all vertices. Hypergraphs with no good splits are either primes or solid polygons.

Modification 2: Solid polygons

A hypergraph is a solid polygon if it consist of a (possibly 0 weight) cycle and a (possibly 0 weight) hyperedge covering all vertices. Hypergraphs with no good splits are either primes or solid polygons. A standard decomposition consist of primes and solid polygons.

Modification 3: Hypercactus

Definition

A hypergraph is called a hypercactus if it can be obtained through the following operations from a cactus: Split the edges incident to a star, and "blow up" the vertex into a hyperedge.

Modification 3: Hypercactus Example

Modification 3: Hypercactus representation

Theorem ([Cheng 1999, Fleiner \& Jordán 1999])
Every hypergraph have a hypercactus representation.

Modification 3: Hypercactus representation

Theorem ([Cheng 1999, Fleiner \& Jordán 1999])
Every hypergraph have a hypercactus representation.
Remark: Fleiner \& Jordán actually showed there is a hypercactus representation for all symmetric submodular functions.

Conclusion

All hypergraph min-cuts can be computed in the same running time as finding a single min-cut.

Thank you!

