Computing min-cuts in hypergraphs

Chandra Chekuri and <u>Chao Xu</u> July 18, 2017

University of Illinois, Urbana-Champaign

A graph G = (V, E) consists of vertices V and edges $E \subset \{\{u, v\} | u, v \in V\}.$

A graph G = (V, E) consists of vertices V and edges $E \subset \{\{u, v\} | u, v \in V\}.$

A hypergraph H = (V, E) consists of vertices V and edges $E \subset \{U|U \subset V, |U| \ge 2\}.$

A graph G = (V, E) consists of vertices V and edges $E \subset \{\{u, v\} | u, v \in V\}.$

A hypergraph H = (V, E) consists of vertices V and edges $E \subset \{U|U \subset V, |U| \ge 2\}.$

Each edge is assigned with a positive weight $w : E \to \mathbb{R}_+$.

Cut function

- Edge e ∈ E crosses S ⊂ V, if e ∩ S and e ∩ V \ S are both non-empty.
- $\delta(S)$ is the set of all edges cross S.
- The cut function $c: 2^V \to \mathbb{R}_+$

$$c(S) = \sum_{e \in \delta(S)} w(e)$$

 A cut is a bipartition of the vertices (S, V \ S). We also call the set S a cut.

- A cut is a bipartition of the vertices (S, V \ S). We also call the set S a cut.
- A cut S is a (global) min-cut if c(S) is minimized. It's value is denoted as λ(G).

- A cut is a bipartition of the vertices (S, V \ S). We also call the set S a cut.
- A cut S is a (global) min-cut if c(S) is minimized. It's value is denoted as λ(G).
- A cut S a *st*-cut, if $s \in S$ and $t \in V \setminus S$.

- A cut is a bipartition of the vertices (S, V \ S). We also call the set S a cut.
- A cut S is a (global) min-cut if c(S) is minimized. It's value is denoted as λ(G).
- A cut S a st-cut, if $s \in S$ and $t \in V \setminus S$.
- The max-flow min-cut theorem is relates max-st-flow with min-st-cut (also called local min-cuts). It's value is denoted as λ(G, s, t).

• disconnect railway networks

- disconnect railway networks
- image segmentation

- disconnect railway networks
- image segmentation
- graph partitioning

- disconnect railway networks
- image segmentation
- graph partitioning
- useful constraints for traveling salesman problem

- disconnect railway networks
- image segmentation
- graph partitioning
- useful constraints for traveling salesman problem
- ...

• Reinforce railway networks

• Reinforce railway networks edge connectivity augmentation [Gabow 1991; Naor, Gusfield, Martel 1997]

- Reinforce railway networks edge connectivity augmentation [Gabow 1991; Naor, Gusfield, Martel 1997]
- data security [Kao 1996]

- Reinforce railway networks edge connectivity augmentation [Gabow 1991; Naor, Gusfield, Martel 1997]
- data security [Kao 1996]
- graph drawing [Kant 1993]

- Reinforce railway networks edge connectivity augmentation [Gabow 1991; Naor, Gusfield, Martel 1997]
- data security [Kao 1996]
- graph drawing [Kant 1993]
- edge splitting [Nagamochi, Nakamura, Ibaraki 2000]
- ...

• How to find a single min-cut in a graph?

- How to find a single min-cut in a graph?
- What do we mean by ALL min-cuts and how did we find them?

- How to find a single min-cut in a graph?
- What do we mean by ALL min-cuts and how did we find them?
- A new algorithm for finding ALL min-cuts in graphs.

- How to find a single min-cut in a graph?
- What do we mean by ALL min-cuts and how did we find them?
- A new algorithm for finding ALL min-cuts in graphs.
- How to modify the algorithm to work for hypergraphs?

n is the # of vertices. *m* is the # of edges.

• Naive:

$$\lambda(G) = \min_{s,t\in V} \lambda(G,s,t)$$

• Naive:

$$\lambda(G) = \min_{s,t\in V} \lambda(G,s,t)$$

Find min-st-cuts over all $s, t \in V$. $\binom{n}{2}$ max flows . Max flow takes O(mn) time [Orlin 2013] $= O(n^3m)$

• Naive:

$$\lambda(G) = \min_{s,t\in V} \lambda(G,s,t)$$

Find min-st-cuts over all $s, t \in V$. $\binom{n}{2}$ max flows . Max flow takes O(mn) time [Orlin 2013] $= O(n^3m)$

• Smarter:

$$\lambda(G) = \min_{t \in V} \lambda(G, s, t)$$

• Naive:

$$\lambda(G) = \min_{s,t\in V} \lambda(G,s,t)$$

Find min-st-cuts over all $s, t \in V$. $\binom{n}{2}$ max flows . Max flow takes O(mn) time [Orlin 2013] $= O(n^3m)$

• Smarter:

$$\lambda(G) = \min_{t \in V} \lambda(G, s, t)$$

Fix $s \in V$, find min-*st*-cut over all $t \in V$.

n-1 max flows = $O(n^2m)$

• Naive:

$$\lambda(G) = \min_{s,t\in V} \lambda(G,s,t)$$

Find min-st-cuts over all $s, t \in V$. $\binom{n}{2}$ max flows . Max flow takes O(mn) time [Orlin 2013] $= O(n^3m)$

• Smarter:

$$\lambda(G) = \min_{t \in V} \lambda(G, s, t)$$

Fix $s \in V$, find min-st-cut over all $t \in V$.

n-1 max flows = $O(n^2m)$

• Fastest known:

$$\lambda(G) = \min(\lambda(G, s, t), \lambda(G/st))$$

 $O(nm + n^2 \log n)$ [Nagamochi & Ibaraki 1992]

Recurrence relation

$$\lambda(G) = \min(\lambda(G, s, t), \lambda(G/st))$$

Recurrence relation

$$\lambda(G) = \min(\lambda(G, s, t), \lambda(G/st))$$

- 1. Find a min-*st*-cut for some $s, t \in V$.
- 2. Find MINCUT(G/st).
- 3. Return the min of the two.

Recurrence relation

$$\lambda(G) = \min(\lambda(G, s, t), \lambda(G/st))$$

- 1. Find a min-*st*-cut for some $s, t \in V$.
- 2. Find MINCUT(G/st).
- 3. Return the min of the two.
- n-1 calls to MINCUT.

Recurrence relation

$$\lambda(G) = \min(\lambda(G, s, t), \lambda(G/st))$$

- 1. Find a min-*st*-cut for some $s, t \in V$.
- 2. Find MINCUT(G/st).
- 3. Return the min of the two.
- n-1 calls to MINCUT.
- n-1 max flow computation.

Recurrence relation

$$\lambda(G) = \min(\lambda(G, s, t), \lambda(G/st))$$

- 1. Find a min-st-cut for some $s, t \in V$.
- 2. Find MINCUT(G/st).
- 3. Return the min of the two.
- n-1 calls to MINCUT.
- n-1 max flow computation.
- $O(n^2m)$ again.
- How to improve this?

Find a min-*st*-cut for some $s, t \in V$.

Find a min-*st*-cut for some $s, t \in V$.

• Aim: pick *s* and *t*, where the max *st*-flow can be computed quickly.

- Aim: pick *s* and *t*, where the max *st*-flow can be computed quickly.
- How?

- Aim: pick *s* and *t*, where the max *st*-flow can be computed quickly.
- How? maximum adjacency ordering.

Adjacency

$$d(A,B) = \sum_{e \in \delta(A) \cap \delta(B)} w(e)$$

Adjacency

$$d(A,B) = \sum_{e \in \delta(A) \cap \delta(B)} w(e)$$

 v_1, \ldots, v_n is a maximum adjacency ordering(MA-ordering) if for all $1 \le i \le j \le n$,

$$d(\{v_1,\ldots,v_{i-1}\},v_i) \geq d(\{v_1,\ldots,v_{i-1}\},v_j).$$

Adjacency

$$d(A,B) = \sum_{e \in \delta(A) \cap \delta(B)} w(e)$$

 v_1, \ldots, v_n is a maximum adjacency ordering(MA-ordering) if for all $1 \le i \le j \le n$,

$$d(\{v_1,\ldots,v_{i-1}\},v_i) \geq d(\{v_1,\ldots,v_{i-1}\},v_j).$$

 $d(\{v_1, \ldots, v_{i-1}\}, v_i) \ge d(\{v_1, \ldots, v_{i-1}\}, v_j)$

 v_4

 v_5

 $d(\{v_1,\ldots,v_{i-1}\},v_i) \geq d(\{v_1,\ldots,v_{i-1}\},v_j)$

MA-ordering can be found in $O(m + n \log n)$ time.

 $\{v_n\}$ forms a min $v_{n-1}v_n$ -cut.

 $\{v_n\}$ forms a min $v_{n-1}v_n$ -cut.

Lemma ([Arikati & Mehlhorn 1999]) Given graph G = (V, E) and MA ordering v_1, \ldots, v_n . A max $v_{n-1}v_n$ -flow can be found in O(m) time.

A min-cut of a graph can be found in $n - 1 \times MA$ -ordering, so $O(nm + n^2 \log n)$ time.

- The exact same algorithm works for hypergraphs.
- Different ordering:
 - MA ordering [Klimmek & Wagner 1996]
 - Tight ordering [Mak & Wong 2000]
 - Queyranne ordering [Queyranne 1998]

What is the desired output?

• List all min-cuts?

What is the desired output?

• List all min-cuts? Can there be too many min-cuts?

What is the desired output?

 List all min-cuts? Can there be too many min-cuts? No. There are at most ⁿ₂ min-cuts. [Karger 1993]

What is the desired output?

- List all min-cuts? Can there be too many min-cuts? No. There are at most ⁿ₂ min-cuts. [Karger 1993]
- O(n³) space sufficient: (S, V \ S) requires min(|S|, |V \ S|) space.

What is the desired output?

- List all min-cuts? Can there be too many min-cuts? No. There are at most ⁿ₂ min-cuts. [Karger 1993]
- O(n³) space sufficient: (S, V \ S) requires min(|S|, |V \ S|) space.
- $\Omega(n^3)$ space required: a cycle, space usage $\sum_{i=1}^{n/2} ni = \Omega(n^3)$.

Find a data structure:

- Small: size is smaller than listing all min-cuts.
- Simple: the structure is simple, so one can query the data structure quickly.

Find a data structure:

- Small: size is smaller than listing all min-cuts.
- Simple: the structure is simple, so one can query the data structure quickly. enumeration, counting, filtering...

Find a data structure:

- Small: size is smaller than listing all min-cuts.
- Simple: the structure is simple, so one can query the data structure quickly. enumeration, counting, filtering...

The best kind of data structure: a smaller, simple graph with the same min-cut structure.

Representation

G' = (V', E') is a representation of G = (V, E) if there exist a function $\phi : V \to V'$, such that

- S is a min-cut in G, then $\phi(S)$ is a min-cut in G'.
- S' is a min-cut in G', then $\phi^{-1}(S')$ is a min-cut in G.

Cactus

A graph is called a cactus if no two cycles share an edge.

Cactus

A graph is called a cactus if no two cycles share an edge.

Every graph has a cactus representation. [Karzanov & Timofeev 1986]

Large number of work

- $O(mn \log(n^2/m))$ [Gabow 1993]
- $O(mn + n^2 \log n + n^* m \log n)$ [Nagamochi & Kameda 1996] (n^* is # of vertices in the representation)
- $O(mn + n^2 \log n + \gamma m \log n)$ [Nagamochi, Nakao, Ibaraki 2000] (γ is # of cycles in the representation)
- $O(mn + n^2 \log n)$ [Nagamochi, Nakamura, Ishii 2003]

Cactus representation: The state of the art

An edge *e* is critical, if *e* crosses a min-cut.

Theorem ([Nagamochi & Kameda 1996])

If st is an critical edge, then there exists a partition $\{V_1, \ldots, V_k\}$ of V, such that $\left\{\bigcup_{i=1}^{j} V_i | 1 \le j < k\right\}$ are the set of min-st-cuts.

Can be found in $O(m + n \log n)$ time: MA-ordering.

The partition give us a partial cactus.

Algorithm ALL-MINCUT(G):

- 1. $A \leftarrow$ cactus of all min-*st*-cut for some critical edge *st*.
- 2. $B \leftarrow \text{ALL-MINCUT}(G/st)$.
- 3. Cleverly combine cactus A and B into a cactus for G.

Running time= $n - 1 \times$ MA ordering, same as finding a single min-cut.

• Complicated

- Complicated
- Does not generalize to hypergraphs.

Finding cactus representation for graphs

• decompose the graph to structurally simple graphs.

- decompose the graph to structurally simple graphs.
- preserves information on min-cuts, and might lose information on other cuts.

- decompose the graph to structurally simple graphs.
- preserves information on min-cuts, and might lose information on other cuts. Exactly what we need.

- decompose the graph to structurally simple graphs.
- preserves information on min-cuts, and might lose information on other cuts. Exactly what we need.

Remark: Decomposition framework actually handles all (symmetric) submodular functions ([Fujishige 1983]) [Cunningham 1983].

A min-cut with at least two vertices on each side is called a split.

Definition

Given a graph G, $\{G_1, G_2\}$ is a refinement of G if G_1 and G_2 are graphs obtained through a split (V_1, V_2) and a new marker vertex x as follows.

1. G_1 is G/V_2 , such that V_2 gets contracted to x.

2. G_2 is G/V_1 , such that V_1 gets contracted to x.

Example of a refinement

Definition

A set of graphs $\mathcal{D} = \{G_1, \ldots, G_k\}$ is a decomposition of G if it is obtained from $\{G\}$ by replacing an element by its refinements.

Two decomposition are **equivalent** if they are the same up to relabeling marker vertices.

Crossing

Two cuts $(A, V \setminus A)$ and $(B, V \setminus B)$ are crossing if $A \cap B$, $A \setminus B$ and $B \setminus A$ are all non-empty.

If $(A, V \setminus A)$ and $(B, V \setminus B)$ are non-crossing, then contract A or B preserves the other cut.

A split is good if no min-cut crosses it.

Refinement preserves cuts

29

Refinement preserves cuts

The min-cut in H_1 and H_2 are the min-cuts in H.

Refine through good splits preserves all min-cuts.

Definition

A graph G is prime if it does not contain any split.

There exist graphs that are not prime but have no good splits.

Theorem

A graph without any good split is either a prime or a cycle.

A decomposition consists of primes and cycles is called a standard decomposition.

A decomposition consists of primes and cycles is called a standard decomposition.

Observation: Any refinement of a standard decomposition is a standard decomposition.

A decomposition consists of primes and cycles is called a standard decomposition.

Observation: Any refinement of a standard decomposition is a standard decomposition.

A standard decomposition is minimal, if it is not a refinement of any other standard decomposition.

Theorem ([Fujishige 1983,Cunningham 1983])

There exist a unique minimal standard decomposition.

Such decomposition is called the canonical decomposition.

Canonical decomposition is what we want: obtained through only applying good splits.

Properties of the canonical decomposition

• Obtained through refinement applied to good splits.

- Obtained through refinement applied to good splits.
- Consists of only primes and cycles.

- Obtained through refinement applied to good splits.
- Consists of only primes and cycles.
- Recover a cactus representation from a canonical decomposition is easy: O(n) time. [Cheng 1999]

- Obtained through refinement applied to good splits.
- Consists of only primes and cycles.
- Recover a cactus representation from a canonical decomposition is easy: O(n) time. [Cheng 1999]

New Goal: Find the canonical decomposition.

- 1. Find a good split.
- 2. Produce a refinement $\{G_1, G_2\}$ using the good split.
- 3. Recurse on G_1 and G_2 .

- 1. Find a good split.
- 2. Produce a refinement $\{G_1, G_2\}$ using the good split.
- 3. Recurse on G_1 and G_2 .

Algorithm running time are dominated by finding O(n) good splits. Finding a good split is no easier than finding a min-cut.

Merge: $\{G_1, \ldots, G_k\}$ a decomposition of G, G_1 and G_2 shares a marker vertex. Find a decomposition $\{G', G_3, \ldots, G_k\}$ of G, where $\{G_1, G_2\}$ is a refinement of G'.

Merge: $\{G_1, \ldots, G_k\}$ a decomposition of G, G_1 and G_2 shares a marker vertex. Find a decomposition $\{G', G_3, \ldots, G_k\}$ of G, where $\{G_1, G_2\}$ is a refinement of G'.

- 1. Find any standard decomposition.
- 2. Merge elements in the decomposition while maintaining a standard decomposition.

Merge: $\{G_1, \ldots, G_k\}$ a decomposition of G, G_1 and G_2 shares a marker vertex. Find a decomposition $\{G', G_3, \ldots, G_k\}$ of G, where $\{G_1, G_2\}$ is a refinement of G'.

- 1. Find any standard decomposition.
- 2. Merge elements in the decomposition while maintaining a standard decomposition.

Second operation is O(nm) time:

1. Inspect each marker vertex

Merge: $\{G_1, \ldots, G_k\}$ a decomposition of G, G_1 and G_2 shares a marker vertex. Find a decomposition $\{G', G_3, \ldots, G_k\}$ of G, where $\{G_1, G_2\}$ is a refinement of G'.

- 1. Find any standard decomposition.
- 2. Merge elements in the decomposition while maintaining a standard decomposition.

Second operation is O(nm) time:

- 1. Inspect each marker vertex (O(n) of them)
- 2. Check if merge maintains a standard decomposition.

Merge: $\{G_1, \ldots, G_k\}$ a decomposition of G, G_1 and G_2 shares a marker vertex. Find a decomposition $\{G', G_3, \ldots, G_k\}$ of G, where $\{G_1, G_2\}$ is a refinement of G'.

- 1. Find any standard decomposition.
- 2. Merge elements in the decomposition while maintaining a standard decomposition.

Second operation is O(nm) time:

- 1. Inspect each marker vertex (O(n) of them)
- 2. Check if merge maintains a standard decomposition. Easy: Is the new graph a cycle?

Merge: $\{G_1, \ldots, G_k\}$ a decomposition of G, G_1 and G_2 shares a marker vertex. Find a decomposition $\{G', G_3, \ldots, G_k\}$ of G, where $\{G_1, G_2\}$ is a refinement of G'.

- 1. Find any standard decomposition.
- 2. Merge elements in the decomposition while maintaining a standard decomposition.

Second operation is O(nm) time:

- 1. Inspect each marker vertex (O(n) of them)
- 2. Check if merge maintains a standard decomposition. Easy: Is the new graph a cycle?

New Goal: Find a standard decomposition.

Idea: We don't have to always apply refinement all the time. Any progress is fine.

Idea: We don't have to always apply refinement all the time. Any progress is fine.

For fixed $s, t \in V$, either there is a split that separates s and t(called a *st*-split). Or we can contract s and t.

Problem

Given G and the min-cut value λ , outputs either a split in G or a pair of vertices $\{s, t\}$ such that there is no st-split in G.

An algorithm solve the above problem is called a split oracle.

Problem

Given G and the min-cut value λ , outputs either a split in G or a pair of vertices $\{s, t\}$ such that there is no st-split in G.

An algorithm solve the above problem is called a split oracle.

If we have a fast split oracle, then we can solve the problem.

- 1. Apply the split oracle on G.
- 2. If the oracle returns a split, find a refinement of H and recurse on both sides.
- 3. Otherwise, the oracle output a pair *s*, *t*. Contract *s* and *t* and recurse.

Theorem

A split oracle can be implemented in $O(m + n \log n)$ time. Sketch

- Use MA-ordering to find a max *st*-flow for some *s* and *t*.
- Enumerate at most 3 min *st*-cuts using the maximum flow. It either finds a split or decide there is none. [Provan & Shier 1996]

1. cactus representation:

1. cactus representation: O(m)+ finding the canonical decomposition.

- 1. cactus representation: O(m)+ finding the canonical decomposition.
- 2. canonical decomposition:

- 1. cactus representation: O(m)+ finding the canonical decomposition.
- 2. canonical decomposition: O(nm)+finding a standard decomposition

- 1. cactus representation: O(m)+ finding the canonical decomposition.
- 2. canonical decomposition: O(nm)+finding a standard decomposition
- 3. standard decomposition:

- 1. cactus representation: O(m)+ finding the canonical decomposition.
- 2. canonical decomposition: O(nm)+finding a standard decomposition
- 3. standard decomposition: $O(nm) + O(n) \times$ split oracle

- 1. cactus representation: O(m)+ finding the canonical decomposition.
- canonical decomposition: O(nm)+finding a standard decomposition
- 3. standard decomposition: $O(nm) + O(n) \times$ split oracle
- 4. split oracle:

- 1. cactus representation: O(m)+ finding the canonical decomposition.
- canonical decomposition: O(nm)+finding a standard decomposition
- 3. standard decomposition: $O(nm) + O(n) \times$ split oracle
- 4. split oracle: MA-ordering $O(m + n \log n)$.

- 1. cactus representation: O(m)+ finding the canonical decomposition.
- canonical decomposition: O(nm)+finding a standard decomposition
- 3. standard decomposition: $O(nm) + O(n) \times$ split oracle
- 4. split oracle: MA-ordering $O(m + n \log n)$.

Total running time: $O(nm + n^2 \log n)$.

- 1. cactus representation: O(m)+ finding the canonical decomposition.
- canonical decomposition: O(nm)+finding a standard decomposition
- 3. standard decomposition: $O(nm) + O(n) \times$ split oracle
- 4. split oracle: MA-ordering $O(m + n \log n)$.

Total running time: $O(nm + n^2 \log n)$. Same as finding a single min-cut.

Our algorithm almost work for hypergraphs. Just a few small changes.

- 1. We need to use tight ordering instead of MA-ordering.
- 2. There are non-cycles that also doesn't have any good split.
- 3. Cactus is not the right representation.

Modification 1: Tight adjacency and tight ordering

d'(A,B) = 1

Modification 1: Tight adjacency and tight ordering

 v_1, \ldots, v_n is a tight ordering(MA ordering) if for all $1 \le i \le j \le n$, $d'(\{v_1, \ldots, v_{i-1}\}, v_i) \ge d'(\{v_1, \ldots, v_{i-1}\}, v_j).$

Modification 2: Solid polygons

A hypergraph is a solid polygon if it consist of a (possibly 0 weight) cycle and a (possibly 0 weight) hyperedge covering all vertices.

Modification 2: Solid polygons

A hypergraph is a solid polygon if it consist of a (possibly 0 weight) cycle and a (possibly 0 weight) hyperedge covering all vertices. Hypergraphs with no good splits are either primes or solid polygons.

Modification 2: Solid polygons

A hypergraph is a solid polygon if it consist of a (possibly 0 weight) cycle and a (possibly 0 weight) hyperedge covering all vertices. Hypergraphs with no good splits are either primes or solid polygons. A standard decomposition consist of primes and solid polygons.

Definition

A hypergraph is called a hypercactus if it can be obtained through the following operations from a cactus: Split the edges incident to a star, and "blow up" the vertex into a hyperedge.

Modification 3: Hypercactus Example

Theorem ([Cheng 1999, Fleiner & Jordán 1999]) Every hypergraph have a hypercactus representation.

Theorem ([Cheng 1999, Fleiner & Jordán 1999]) Every hypergraph have a hypercactus representation.

Remark: Fleiner & Jordán actually showed there is a hypercactus representation for all symmetric submodular functions.

All hypergraph min-cuts can be computed in the same running time as finding a single min-cut.

Thank you!