
Global and fixed-terminal cuts in digraphs

Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, Euiwoong
Lee and Chao Xu
August 2, 2017

University of Illinois, Urbana-Champaign. Department of Computer Science.

1

What to expect

• Survey talk.
• Lot of definitions, problems and examples.
• Few technical details.
• Many open problems.

2

Introduction

Let G = (V, E) be a graph.

A cut (node cut) is a set of edges (nodes) that disconnects
some pair of vertices if removed. The value of a cut (node cut)
is the number of edges (nodes) in the cut.
min global cut (node cut) problem:

• Input: G.
• Output: Minimum (node) cut.

min local cut (node cut) problem:

• Input: G, s, t ∈ V.
• Output: Minimum (node) cut that disconnects s and t.

3

Complexity separation of local and global cuts

• local cut at least as hard as global cut.
• min cut can be reduced to O(n2) calls to min local cut.
• Main problem: When is local cut strictly harder than
global cut?

• Local cut is NP-hard but polynomial time algorithm for
global cut.

• α-inapproximability of local cut, but α− δ-approximation
for global cut for δ > 0.

4

Local and global cuts in undirected
graphs

Cuts in undirected graphs

Consider a undirected graph G = (V, E). We say s, t ∈ V are
disconnected if there is no paths between s and t.

• cut: A set of edges s.t. its removal disconnects some pair
of vertices.

• st-cut: A set of edges s.t. its removal disconnect s and t.
• Each set S ⊂ V \ {t} such that s ∈ S determines a st-cut
with |δ(S)| edges.

• λ(s, t;G) is the value of min st-cut.
• λ(G) = mins,t∈V λ(s, t;G) is the value of min cut.

5

Algorithmic aspects

• λ(s, t) = mins∈S |δ(S)| can be computed in O(nm) time by
reducing to maximum flow. [Orlin 2013]

• λ(G) can be computed directly using MA-ordering.
[Nagamochi & Ibaraki 1992]

6

Node cuts

• κ(s, t;G) is the value of min st-node-cut.
• κ(G) = mins,t∈V κ(s, t;G) is the value of min node-cut.

Both can be solved in polynomial time, since κ(s, t;G) reduces
to maximum flow.

7

No complexity separation

Both global and local problem for edge and node deletion can
be solved in polynomial time.

8

Local and global cuts in digraphs

Two definitions of st-cut

For a graph G and two vertices s and t. A st-cut is a set of
edges E′, s.t. in G− E′

• Definition 1: There is no path between s and t.
• Definition 2: There is no vertex that can reach both s and t.

Two notions are the same in undirected graphs.

9

Bicut and double cut

Consider a digraph G = (V, E).

Definition (st-bicut)
A set of edges E′ is a st-bicut, if there is no path between s and
t in G− E′

Definition (st-double cut)
A set of edges E′ is a st-double cut, if there is no vertex v ∈ V
that can reach both s and t.

10

Example

ss tt

11

st-bicut example

ss tt

12

Not a st-double cut

ss tt

13

st-double cut example

ss tt

14

Double Cut

st-Double cut

• disconnected s and t: No vertex can reach both s and t.
• λd(s, t;G) is the value of min st-double cut.
• λd(G) = mins,t∈V λd(s, t;G).

15

Properties of double cut

Let E′ be a st-double cut in G.

• E′ is a st-bicut.
• G− E′ has no arborescence.

λd(G) is the minimum number of edges to remove to destroy
all arborescence.

16

Why double cut?

• Blocking arborescence [Bernáth & Pap 2013]

• Application in distributed computing.

Theorem ([Tseng & Vaidya 2015])
The consensus problem in synchronized model can tolerate f
edge (node) failure iff remove any f edges (nodes), there is still
an arborescence.

• The largest edge failure tolerance is λd(G)− 1.
• The largest node failure tolerance is κd(G)− 1.

17

How to think about double cut

Theorem ([Bernáth & Pap 2013])
Finding λd(s, t) is equivalent to finding disjoint sets S, T ⊂ V,
such that s ∈ S, t ∈ T and din(S) + din(T) is minimized.

Proof.

• ⇒ Let set of vertices that can reach s and t to be S and T,
respectively.

• ⇐ Remove incoming edges to S and T then no vertices
outside S can reach s, outside t can reach T.

Corollary
λd(s, t) can be computed in polynomial time by reducing to
maximum flow.

18

Finding λd(s, t) through max-flow

GGGrevGrev

vrevvrev
vv

11

tt

srevsrev

19

Complexity separation?

There is no complexity separation for local and global double
cut.

20

Node double cut

• κd(s, t;G) is the value of min st-node double cut.
• κd(G) = mins,t∈V κd(s, t;G).

Difficulty: non-monotonic. A is a node-double cut, A ∪ {v}
might not be a node-double cut.

vv

A = ∅.

21

Node Double cut results

Problem Approximation Inapproximability
node double cut 2 3/2− ϵ

node st-double cut 2 2− ϵ

Open: Is node double cut strictly harder than node st-double
cut?

22

Bicut

Bicut

st-bicut: a set of edges such that after its removal there is no
path between s and t.

• λb(s, t) for the value of min st-bicut.
• λb(G) = mins,t∈V λb(s, t)

23

st-bicut

A special case of multicut in directed graphs.

• 2-approximation possible. [Dahlhaus et. al. 1994]
• 2− ϵ-inapproximable under UGC. [Chekuri & Madan 16, Lee 16]

24

How to think about global bicut

A and B are uncomparable if A \ B ̸= ∅ and B \ A ̸= ∅.

Theorem
The min-bicut problem is equivalent to finding a
uncomparable pair A,B ⊂ V with minimum |δin(A) ∪ δin(B)|.

Proof.

• ⇒ Remove δin(A) ∪ δin(B), then nodes in A \ B cannot
reach nodes in B \ A and vice versa.

• ⇐ no path between s and t. The set of nodes that can
reach s and the set of nodes that can reach t are
uncomparable, and have in-degree 0.

25

Global bicut

Theorem ([[BCKLX 2017]])
A (2− δ)-approximation, where δ ≥ 1

448 .

A separation between local and global bicut! It’s not known if
computing λb(G) is NP-hard.

26

Results on bicut

A cut is a s∗-bicut if it is a st-bicut for some t.
Problem Approximation Inapproximability
bicut 2− δ ?

s∗-bicut 2 4/3− ϵ

st-bicut 2 2− ϵ

27

Node Bicut

st-node-bicut: a set of nodes such that after its removal there
is no path between s and t.

• κb(s, t) for the value of min st-bicut.
• κb(G) = mins,t∈V κb(s, t).

28

min st-node bicut and min st-bicut are equivalent

• Reduce st-bicut to st-node bicut: Split each edge by a
node, original node have infinite weight.

• Reduce st-node bicut to st-bicut: Split each node and add
edge weight equal to the node weight. All other edges
have infinite weight.

The equivalence doesn’t hold for global node bicut and global
bicut.

29

Node Bicut results

Problem Approximation Inapproximability
node bicut 2 3/2− ϵ

node s∗-bicut 2 3/2− ϵ

node st-bicut 2 2− ϵ

Open: Is there a complexity separation between node bicut
and st-node bicut?

30

Disconnecting more than 2 vertices

k-cuts in undirected graphs

A set T ⊂ V is disconnected if there is no path between any
pair of vertices in T.

• k-cut: A set of edges s.t. its removal creates a
disconnected set of size at least k.

• T-separating k-cut: A k-cut s.t. its removal disconnects T.
• λk(T;G) is the value of min T-separating k-cut.
• Local: λk(T;G) for |T| = k.
• Global: λk(G), is the value of min k-cut.

λk(G) = min
|T|=k,T⊂V

λk(T;G).

λk(G) = λk(T,G) where |T| ≤ 1.
• Semiglobal: |T| = i for some 2 ≤ i < k.

31

Previous results

Let k be a constant.

• Computing λk(G) can be done in polynomial time.
[Goldschmidt & Hochbaum 1994]

• Computing λk(T;G) is hard for |T| ≥ 3, but admits a
2-approximation. [Garg, Vazirani & Yannakakis 2004] In
particular, min local k-cut for k ≥ 3 is NP-hard.

Local k-cut is strictly harder than the global k-cut.

32

A subproblem for bicut approximation: s ∗ t-linear 3-cut

A set of edges E′ is s ∗ t-linear 3-cut if there exist a vertex
r ̸= s, t, such that s cannot reach r and t, and r cannot reach t
in G− E′.

Theorem
Finding s ∗ t-linear 3-cut is equivalent to finding

min
{
d(A,B) + d(A, C) + d(B, C) : {A,B,C} a partition of V,A,B,C ̸=∅,s∈A,t∈C

}
.

ss tt
⇤⇤

AA BB CC 33

Why do we care about s ∗ t linear 3-cut

• It’s a semiglobal version of linear k-cut. [Chekuri & Madan
2017]

• Improvement in approximation of s ∗ t linear 3-cut
improves the 2− δ approximation algorithm for min bicut.

34

• Finding a minimum s ∗ t-linear 3-cut is not known to be
NP-hard.

• We’ve shown there is a 3/2-approximation algorithm.
• A newer result shows there is a

√
2-approximation

algorithm. [Bérczi et. al. unpublished]

Is s ∗ t-linear 3-cut NP-hard?

What about the undirected version?

35

What is the undirected version of s ∗ t-linear 3-cut?

ss tt
⇤⇤

AA BB CC

36

What is the undirected version of s ∗ t-linear 3-cut?

ss tt
⇤⇤

AA BB CC

Undirected version of s ∗ t-linear 3-cut is {s, t}-separating
3-cut.

37

{s, t}-separating edge k-cut

We want to find λk(T;G) for |T| = 2.

1. At the boundary between P and NP-hard.
• Finding λk(T,G) is NP-hard for |T| ≥ 3.
• Finding λk(T,G) is easy for |T| ≤ 1.

2. An open problem [Queyranne 2012].

38

st-separating k-cut

Theorem ([BCKLX 2017])
Let {V1, . . . , Vk} be a partition of V corresponding to an optimal
solution of min st-separating k-cut in G. s ∈ Vk−1 and t ∈ Vk.
Add a infinite weight edge between st and call the new graph H.

c(V1, . . . , Vk−2, Vk−1 ∪ Vk) ≤ 2λk−1(H)

ss tt ss tt

V1V1

11

V1V1

V2V2
V3V3 V2 [V3V2 [V3

39

Proof

Let W1, . . . ,Wk−1 be a optimal k− 1 cut for H and s, t ∈ Wk−1.
Let U1 and U2 be min st-cut in G[Wk−1]

λk(G) ≤ c(W1, . . . ,Wk−2,U1,U2) = λk−1(H) + λ(s, t;G[Wk−1]).

.

U1U1 U2U2

W1W1W1W1 W2W2W2W2 Wk�2Wk�2

Wk�1Wk�1

Wk�2Wk�2

ss tt
ss tt

40

Proof

Let V1, . . . , Vk be a optimal k-cut for G, s ∈ Vk−1, t ∈ Vk.

λ(s, t;G) ≤ d(Vk−1, Vk)+
1
2

d(V1 ∪ . . . ∪ Vk−2) +
∑

i,j≤k−2,i ̸=j
d(Vi, Vj)



.

ss tt

V1V1 V2V2

Vk�1Vk�1
VkVk

Vk�2Vk�2

X

i,jk�2,i 6=j

d(Vi, Vj)
X

i,jk�2,i 6=j

d(Vi, Vj)

d(V1 [. . . [Vk�2)d(V1 [. . . [Vk�2)

d(Vk�1, Vk)d(Vk�1, Vk)

41

Proof

λk−1(H) + λ(s, t;G[Wk−1])

≥ λk(G)

= d(Vk−1, Vk) + d(V1 ∪ . . . ∪ Vk−2) +
∑

i,j≤k−2,i ̸=j
d(Vi, Vj)

≥ λ(s, t;G) + 1
2

d(V1 ∪ . . . ∪ Vk−2) +
∑

i,j≤k−2,i ̸=j
d(Vi, Vj)


= λ(s, t;G) + 1

2(c(V1, . . . , Vk−2, Vk−1 ∪ Vk))

≥ λ(s, t;G[Wk−1]) +
1
2(c(V1, . . . , Vk−2, Vk−1 ∪ Vk))

42

Algorithm for st-separating k-cut

Algorithm

1. Enumerate all k− 1-cut {W1, . . . ,Wk−1} with value at most
2λk−1(H), assuming s, t ∈ Wk−1.

2. For each k− 1-cut, find min-st-cut in G[Wk−1], say {U1,U2}.
Let {W1, . . . ,Wk−2,U1,U2} be a candidate solution.

3. Output the candidate solution with the smallest value.

There are O(n2(k−1)) k− 1-partitions with value ≤ 2λk−1(H).
[Karger & Stein 1996]

Theorem ([BCKLX 2017])
The st-separating k-cut can be solved in polynomial time for
constant k.

43

Node k-cuts

1. κk(T;G) is the value of the minimum T-separating node
k-cut.

2. κk(G) is the value of the minimum node k-cut.

44

Previous Results

1. κk(T;G) has a (2− 2/k)-approximation [Garg, Vazirani &
Yannakakis 2004].

2. It was raised as an open problem if κk(G) is solvable in
polynomial time for all k ≥ 3. [Goldschmidt & Hochbaum 1994]

45

Node k-cut results

A complete characterization for node-k-cut.

Theorem ([BCKLX 2017])
If k ≥ 3, then there exist a (2− 2/k)-approximation algorithm
for κk(T;G) and cannot be approximated within (2− 2/k− ϵ).
Otherwise, it’s polynomial time solvable.

46

(H, t)-cuts

(H, t)-cuts

• H a graph(digraph) on {1, . . . , k}, and a integer t. H is
called the pattern graph.

• G = (V, E) be a input graph(digraph)
• A k-partition (V1, . . . , Vk) of V where Vt+1, . . . , Vk are
non-empty is a (H, t)-cut. (V1, . . . , Vt can be empty)

• The (H, t)-cut value of (V1, . . . , Vk) is∑
e∈Vi→Vj
(i,j)∈E(H)

w(e)

• What can we model with (H, t)-cut?

47

k-cut

t = 0

48

Double cut

1

2 3

t = 1.

Find A and B such that A ∩ B = ∅ and |δin(A)|+ |δin(B)| is
minimized.

49

Linear 3-cut

1

2 3

t = 0.

50

bicut

1

3 4

2

t = 2. Find two uncomparable sets A and B such that
|δin(A) ∪ δin(B)| is minimized. Let V1 = V \ (A ∪ B), V2 = A ∩ B,
V3 = A \ B, V4 = B \ A. 51

k-subpartition

Find k sets {V1, . . . , Vk} such that Vi ∩ Vj = ∅ and minimize
k∑
i=1

|δin(Vi)|.

Double cut is equivalent to 2-subpartition.

1

t = 1. Solvable in polynomial time if G is obtained from
bidirect all edges of a undirected graph [Nagamochi 2007].

52

Polynomial time solvable cases when H is undirected

• If H has at most 4 vertices, then finding min (H, 0)-cut is
NP-hard iff H = 2K2. [Elem, Hassin & Monnot 2013 unpublished]
Reduces to partition the graph to two disjoint bicliques.

A vertex v is neighborhood minimal, if there is no vertex u such
that N(u) ⊊ N(v). min-(H, 0)-cut is solvable in polynomial time
if

• The neighborhood minimal vertices of H is a independent
set in H.

• H = H1 + H2 where min-(H1, 0)-cut and min-(H2, 0)-cut are
solvable in polynomial time. [Kawarabayashi and X unpublished]

53

Fixing terminals

Given G and U1, . . . ,Uk, find min-(H, t)-cut (V1, . . . , Vk) such that
Ui ⊂ Vi.

54

Open Problems

Polynomial time algorithms for (H, t)-cut

• For which (H, t) pair is min (H, t)-cut solvable in
polynomial time?

• Does (H, 0)-cut solvable in polynomial time implies
(H, t)-cut solvable in polynomial time for all t?

• What about fixed terminal version?

55

Close the gaps

Problem Edge-deletion Node-deletion
DoubleCut Poly-time 2-approx

(3/2− ϵ)-inapprox
st-DoubleCut Poly-time 2-approx

(2− ϵ)-inapprox
BiCut (2− 1/448)-approx 2-approx

NP-hard? (3/2− ϵ)-inapprox
s∗-BiCut 2-approx 2-approx

(4/3− ϵ)-inapprox (3/2− ϵ)-inapprox
st-BiCut 2-approx [Equivalent to edge-deletion]

(2− ϵ)-inapprox
s ∗ t-Linear 3-cut

√
2-approx 2-approx
NP-hard? (4/3− ϵ)-inapprox

56

Hypergraphs

λk(G) can be found in hypergraphs in randomized polynomial
time [Chandrasekaran, X & Yu unpublished].

What about λk({s, t} ;G)?

• The algorithm is still correct.
• Number of approximate min-k-cut is exponential.
• Exponential running time.

Can we find λk({s, t} ;G) in polynomial time for hypergraphs?

57

Thank You!

57

	Local and global cuts in undirected graphs
	Local and global cuts in digraphs
	Double Cut
	Bicut
	Disconnecting more than 2 vertices
	(H,t)-cuts
	Open Problems

