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What to expect

• Survey talk.
• Lot of definitions, problems and examples.
• Few technical details.
• Many open problems.
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Introduction

Let G = (V, E) be a graph.

A cut (node cut) is a set of edges (nodes) that disconnects
some pair of vertices if removed. The value of a cut (node cut)
is the number of edges (nodes) in the cut.
min global cut (node cut) problem:

• Input: G.
• Output: Minimum (node) cut.

min local cut (node cut) problem:

• Input: G, s, t ∈ V.
• Output: Minimum (node) cut that disconnects s and t.
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Complexity separation of local and global cuts

• local cut at least as hard as global cut.
• min cut can be reduced to O(n2) calls to min local cut.
• Main problem: When is local cut strictly harder than
global cut?

• Local cut is NP-hard but polynomial time algorithm for
global cut.

• α-inapproximability of local cut, but α− δ-approximation
for global cut for δ > 0.
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Local and global cuts in undirected
graphs



Cuts in undirected graphs

Consider a undirected graph G = (V, E). We say s, t ∈ V are
disconnected if there is no paths between s and t.

• cut: A set of edges s.t. its removal disconnects some pair
of vertices.

• st-cut: A set of edges s.t. its removal disconnect s and t.
• Each set S ⊂ V \ {t} such that s ∈ S determines a st-cut
with |δ(S)| edges.

• λ(s, t;G) is the value of min st-cut.
• λ(G) = mins,t∈V λ(s, t;G) is the value of min cut.
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Algorithmic aspects

• λ(s, t) = mins∈S |δ(S)| can be computed in O(nm) time by
reducing to maximum flow. [Orlin 2013]

• λ(G) can be computed directly using MA-ordering.
[Nagamochi & Ibaraki 1992]
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Node cuts

• κ(s, t;G) is the value of min st-node-cut.
• κ(G) = mins,t∈V κ(s, t;G) is the value of min node-cut.

Both can be solved in polynomial time, since κ(s, t;G) reduces
to maximum flow.
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No complexity separation

Both global and local problem for edge and node deletion can
be solved in polynomial time.
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Local and global cuts in digraphs



Two definitions of st-cut

For a graph G and two vertices s and t. A st-cut is a set of
edges E′, s.t. in G− E′

• Definition 1: There is no path between s and t.
• Definition 2: There is no vertex that can reach both s and t.

Two notions are the same in undirected graphs.
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Bicut and double cut

Consider a digraph G = (V, E).

Definition (st-bicut)
A set of edges E′ is a st-bicut, if there is no path between s and
t in G− E′

Definition (st-double cut)
A set of edges E′ is a st-double cut, if there is no vertex v ∈ V
that can reach both s and t.
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Example

ss tt
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st-bicut example

ss tt
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Not a st-double cut

ss tt
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st-double cut example

ss tt

14



Double Cut



st-Double cut

• disconnected s and t: No vertex can reach both s and t.
• λd(s, t;G) is the value of min st-double cut.
• λd(G) = mins,t∈V λd(s, t;G).
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Properties of double cut

Let E′ be a st-double cut in G.

• E′ is a st-bicut.
• G− E′ has no arborescence.

λd(G) is the minimum number of edges to remove to destroy
all arborescence.
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Why double cut?

• Blocking arborescence [Bernáth & Pap 2013]

• Application in distributed computing.

Theorem ([Tseng & Vaidya 2015])
The consensus problem in synchronized model can tolerate f
edge (node) failure iff remove any f edges (nodes), there is still
an arborescence.

• The largest edge failure tolerance is λd(G)− 1.
• The largest node failure tolerance is κd(G)− 1.
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How to think about double cut

Theorem ([Bernáth & Pap 2013])
Finding λd(s, t) is equivalent to finding disjoint sets S, T ⊂ V,
such that s ∈ S, t ∈ T and din(S) + din(T) is minimized.

Proof.

• ⇒ Let set of vertices that can reach s and t to be S and T,
respectively.

• ⇐ Remove incoming edges to S and T then no vertices
outside S can reach s, outside t can reach T.

Corollary
λd(s, t) can be computed in polynomial time by reducing to
maximum flow.
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Finding λd(s, t) through max-flow

GGGrevGrev
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Complexity separation?

There is no complexity separation for local and global double
cut.
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Node double cut

• κd(s, t;G) is the value of min st-node double cut.
• κd(G) = mins,t∈V κd(s, t;G).

Difficulty: non-monotonic. A is a node-double cut, A ∪ {v}
might not be a node-double cut.

vv

A = ∅.
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Node Double cut results

Problem Approximation Inapproximability
node double cut 2 3/2− ϵ

node st-double cut 2 2− ϵ

Open: Is node double cut strictly harder than node st-double
cut?
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Bicut



Bicut

st-bicut: a set of edges such that after its removal there is no
path between s and t.

• λb(s, t) for the value of min st-bicut.
• λb(G) = mins,t∈V λb(s, t)
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st-bicut

A special case of multicut in directed graphs.

• 2-approximation possible. [Dahlhaus et. al. 1994]
• 2− ϵ-inapproximable under UGC. [Chekuri & Madan 16, Lee 16]
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How to think about global bicut

A and B are uncomparable if A \ B ̸= ∅ and B \ A ̸= ∅.

Theorem
The min-bicut problem is equivalent to finding a
uncomparable pair A,B ⊂ V with minimum |δin(A) ∪ δin(B)|.

Proof.

• ⇒ Remove δin(A) ∪ δin(B), then nodes in A \ B cannot
reach nodes in B \ A and vice versa.

• ⇐ no path between s and t. The set of nodes that can
reach s and the set of nodes that can reach t are
uncomparable, and have in-degree 0.
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Global bicut

Theorem ([[BCKLX 2017]])
A (2− δ)-approximation, where δ ≥ 1

448 .

A separation between local and global bicut! It’s not known if
computing λb(G) is NP-hard.
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Results on bicut

A cut is a s∗-bicut if it is a st-bicut for some t.
Problem Approximation Inapproximability
bicut 2− δ ?

s∗-bicut 2 4/3− ϵ

st-bicut 2 2− ϵ
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Node Bicut

st-node-bicut: a set of nodes such that after its removal there
is no path between s and t.

• κb(s, t) for the value of min st-bicut.
• κb(G) = mins,t∈V κb(s, t).
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min st-node bicut and min st-bicut are equivalent

• Reduce st-bicut to st-node bicut: Split each edge by a
node, original node have infinite weight.

• Reduce st-node bicut to st-bicut: Split each node and add
edge weight equal to the node weight. All other edges
have infinite weight.

The equivalence doesn’t hold for global node bicut and global
bicut.
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Node Bicut results

Problem Approximation Inapproximability
node bicut 2 3/2− ϵ

node s∗-bicut 2 3/2− ϵ

node st-bicut 2 2− ϵ

Open: Is there a complexity separation between node bicut
and st-node bicut?
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Disconnecting more than 2 vertices



k-cuts in undirected graphs

A set T ⊂ V is disconnected if there is no path between any
pair of vertices in T.

• k-cut: A set of edges s.t. its removal creates a
disconnected set of size at least k.

• T-separating k-cut: A k-cut s.t. its removal disconnects T.
• λk(T;G) is the value of min T-separating k-cut.
• Local: λk(T;G) for |T| = k.
• Global: λk(G), is the value of min k-cut.

λk(G) = min
|T|=k,T⊂V

λk(T;G).

λk(G) = λk(T,G) where |T| ≤ 1.
• Semiglobal: |T| = i for some 2 ≤ i < k.
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Previous results

Let k be a constant.

• Computing λk(G) can be done in polynomial time.
[Goldschmidt & Hochbaum 1994]

• Computing λk(T;G) is hard for |T| ≥ 3, but admits a
2-approximation. [Garg, Vazirani & Yannakakis 2004] In
particular, min local k-cut for k ≥ 3 is NP-hard.

Local k-cut is strictly harder than the global k-cut.
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A subproblem for bicut approximation: s ∗ t-linear 3-cut

A set of edges E′ is s ∗ t-linear 3-cut if there exist a vertex
r ̸= s, t, such that s cannot reach r and t, and r cannot reach t
in G− E′.

Theorem
Finding s ∗ t-linear 3-cut is equivalent to finding

min
{
d(A,B) + d(A, C) + d(B, C) : {A,B,C} a partition of V,A,B,C ̸=∅,s∈A,t∈C

}
.

ss tt
⇤⇤

AA BB CC 33



Why do we care about s ∗ t linear 3-cut

• It’s a semiglobal version of linear k-cut. [Chekuri & Madan
2017]

• Improvement in approximation of s ∗ t linear 3-cut
improves the 2− δ approximation algorithm for min bicut.
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• Finding a minimum s ∗ t-linear 3-cut is not known to be
NP-hard.

• We’ve shown there is a 3/2-approximation algorithm.
• A newer result shows there is a

√
2-approximation

algorithm. [Bérczi et. al. unpublished]

Is s ∗ t-linear 3-cut NP-hard?

What about the undirected version?
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What is the undirected version of s ∗ t-linear 3-cut?

ss tt
⇤⇤

AA BB CC
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What is the undirected version of s ∗ t-linear 3-cut?

ss tt
⇤⇤

AA BB CC

Undirected version of s ∗ t-linear 3-cut is {s, t}-separating
3-cut.
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{s, t}-separating edge k-cut

We want to find λk(T;G) for |T| = 2.

1. At the boundary between P and NP-hard.
• Finding λk(T,G) is NP-hard for |T| ≥ 3.
• Finding λk(T,G) is easy for |T| ≤ 1.

2. An open problem [Queyranne 2012].
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st-separating k-cut

Theorem ([BCKLX 2017])
Let {V1, . . . , Vk} be a partition of V corresponding to an optimal
solution of min st-separating k-cut in G. s ∈ Vk−1 and t ∈ Vk.
Add a infinite weight edge between st and call the new graph H.

c(V1, . . . , Vk−2, Vk−1 ∪ Vk) ≤ 2λk−1(H)

ss tt ss tt

V1V1

11

V1V1

V2V2
V3V3 V2 [ V3V2 [ V3
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Proof

Let W1, . . . ,Wk−1 be a optimal k− 1 cut for H and s, t ∈ Wk−1.
Let U1 and U2 be min st-cut in G[Wk−1]

λk(G) ≤ c(W1, . . . ,Wk−2,U1,U2) = λk−1(H) + λ(s, t;G[Wk−1]).

. . .. . .. . .. . .

U1U1 U2U2

W1W1W1W1 W2W2W2W2 Wk�2Wk�2

Wk�1Wk�1

Wk�2Wk�2

ss tt
ss tt
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Proof

Let V1, . . . , Vk be a optimal k-cut for G, s ∈ Vk−1, t ∈ Vk.

λ(s, t;G) ≤ d(Vk−1, Vk)+
1
2

d(V1 ∪ . . . ∪ Vk−2) +
∑

i,j≤k−2,i ̸=j
d(Vi, Vj)



. . .. . .

ss tt

V1V1 V2V2

Vk�1Vk�1
VkVk

Vk�2Vk�2

X

i,jk�2,i 6=j

d(Vi, Vj)
X

i,jk�2,i 6=j

d(Vi, Vj)

d(V1 [ . . . [ Vk�2)d(V1 [ . . . [ Vk�2)

d(Vk�1, Vk)d(Vk�1, Vk)
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Proof

λk−1(H) + λ(s, t;G[Wk−1])

≥ λk(G)

= d(Vk−1, Vk) + d(V1 ∪ . . . ∪ Vk−2) +
∑

i,j≤k−2,i ̸=j
d(Vi, Vj)

≥ λ(s, t;G) + 1
2

d(V1 ∪ . . . ∪ Vk−2) +
∑

i,j≤k−2,i ̸=j
d(Vi, Vj)


= λ(s, t;G) + 1

2(c(V1, . . . , Vk−2, Vk−1 ∪ Vk))

≥ λ(s, t;G[Wk−1]) +
1
2(c(V1, . . . , Vk−2, Vk−1 ∪ Vk))
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Algorithm for st-separating k-cut

Algorithm

1. Enumerate all k− 1-cut {W1, . . . ,Wk−1} with value at most
2λk−1(H), assuming s, t ∈ Wk−1.

2. For each k− 1-cut, find min-st-cut in G[Wk−1], say {U1,U2}.
Let {W1, . . . ,Wk−2,U1,U2} be a candidate solution.

3. Output the candidate solution with the smallest value.

There are O(n2(k−1)) k− 1-partitions with value ≤ 2λk−1(H).
[Karger & Stein 1996]

Theorem ([BCKLX 2017])
The st-separating k-cut can be solved in polynomial time for
constant k.

43



Node k-cuts

1. κk(T;G) is the value of the minimum T-separating node
k-cut.

2. κk(G) is the value of the minimum node k-cut.
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Previous Results

1. κk(T;G) has a (2− 2/k)-approximation [Garg, Vazirani &
Yannakakis 2004].

2. It was raised as an open problem if κk(G) is solvable in
polynomial time for all k ≥ 3. [Goldschmidt & Hochbaum 1994]
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Node k-cut results

A complete characterization for node-k-cut.

Theorem ([BCKLX 2017])
If k ≥ 3, then there exist a (2− 2/k)-approximation algorithm
for κk(T;G) and cannot be approximated within (2− 2/k− ϵ).
Otherwise, it’s polynomial time solvable.
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(H, t)-cuts



(H, t)-cuts

• H a graph(digraph) on {1, . . . , k}, and a integer t. H is
called the pattern graph.

• G = (V, E) be a input graph(digraph)
• A k-partition (V1, . . . , Vk) of V where Vt+1, . . . , Vk are
non-empty is a (H, t)-cut. (V1, . . . , Vt can be empty)

• The (H, t)-cut value of (V1, . . . , Vk) is∑
e∈Vi→Vj
(i,j)∈E(H)

w(e)

• What can we model with (H, t)-cut?
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k-cut

t = 0

48



Double cut

1

2 3

t = 1.

Find A and B such that A ∩ B = ∅ and |δin(A)|+ |δin(B)| is
minimized.
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Linear 3-cut

1

2 3

t = 0.
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bicut

1

3 4

2

t = 2. Find two uncomparable sets A and B such that
|δin(A) ∪ δin(B)| is minimized. Let V1 = V \ (A ∪ B), V2 = A ∩ B,
V3 = A \ B, V4 = B \ A. 51



k-subpartition

Find k sets {V1, . . . , Vk} such that Vi ∩ Vj = ∅ and minimize
k∑
i=1

|δin(Vi)|.

Double cut is equivalent to 2-subpartition.

1

t = 1. Solvable in polynomial time if G is obtained from
bidirect all edges of a undirected graph [Nagamochi 2007].
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Polynomial time solvable cases when H is undirected

• If H has at most 4 vertices, then finding min (H, 0)-cut is
NP-hard iff H = 2K2. [Elem, Hassin & Monnot 2013 unpublished]
Reduces to partition the graph to two disjoint bicliques.

A vertex v is neighborhood minimal, if there is no vertex u such
that N(u) ⊊ N(v). min-(H, 0)-cut is solvable in polynomial time
if

• The neighborhood minimal vertices of H is a independent
set in H.

• H = H1 + H2 where min-(H1, 0)-cut and min-(H2, 0)-cut are
solvable in polynomial time. [Kawarabayashi and X unpublished]
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Fixing terminals

Given G and U1, . . . ,Uk, find min-(H, t)-cut (V1, . . . , Vk) such that
Ui ⊂ Vi.
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Open Problems



Polynomial time algorithms for (H, t)-cut

• For which (H, t) pair is min (H, t)-cut solvable in
polynomial time?

• Does (H, 0)-cut solvable in polynomial time implies
(H, t)-cut solvable in polynomial time for all t?

• What about fixed terminal version?
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Close the gaps

Problem Edge-deletion Node-deletion
DoubleCut Poly-time 2-approx

(3/2− ϵ)-inapprox
st-DoubleCut Poly-time 2-approx

(2− ϵ)-inapprox
BiCut (2− 1/448)-approx 2-approx

NP-hard? (3/2− ϵ)-inapprox
s∗-BiCut 2-approx 2-approx

(4/3− ϵ)-inapprox (3/2− ϵ)-inapprox
st-BiCut 2-approx [Equivalent to edge-deletion]

(2− ϵ)-inapprox
s ∗ t-Linear 3-cut

√
2-approx 2-approx
NP-hard? (4/3− ϵ)-inapprox
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Hypergraphs

λk(G) can be found in hypergraphs in randomized polynomial
time [Chandrasekaran, X & Yu unpublished].

What about λk({s, t} ;G)?

• The algorithm is still correct.
• Number of approximate min-k-cut is exponential.
• Exponential running time.

Can we find λk({s, t} ;G) in polynomial time for hypergraphs?
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Thank You!
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