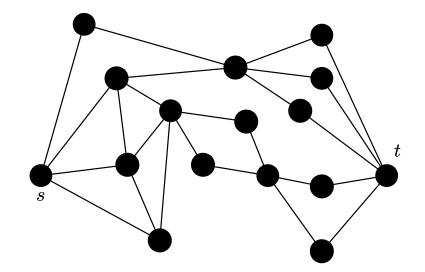
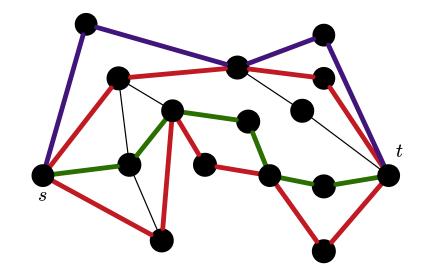
On element-connectivity preserving graph simplifications

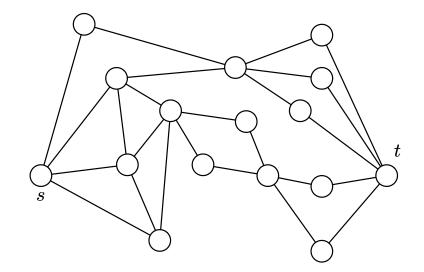
Chandra Chekuri¹ Thapanapong Rukkanchanunt² Chao Xu¹

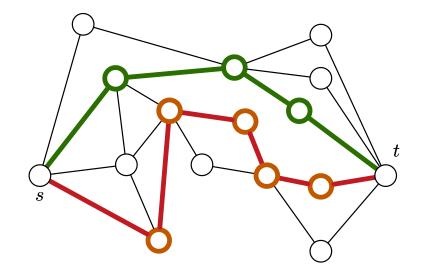
¹ University of Illinois at Urbana-Champaign ² Chiang Mai University

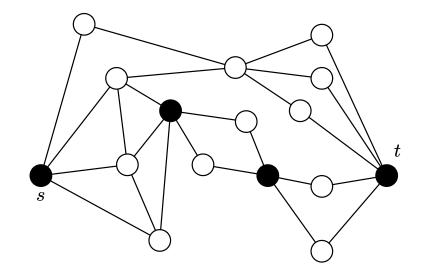
September 15, 2015

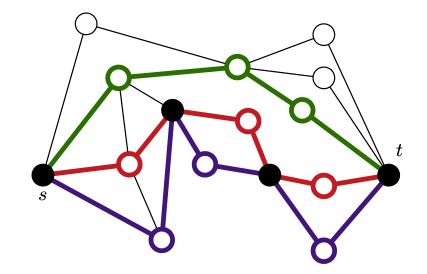












element-connectivity

Undirected graph G = (V, E). $T \subset V$ is a set of terminal vertices. $S = V \setminus T$ is the set of non-terminal(Steiner) vertices.

Definition

The local element-connectivity $\kappa'_G(x, y)$ is the number of maximum element-disjoint paths between x and y in G, where $x, y \in T$. The global element-connectivity is the minimum of all local element-connectivity.

Applications

- Survivable network design
- Packing element-disjoint Steiner trees
- Intersection Network routing
- **④** ...

Reduction lemma

Edges between two non-terminals are called *reducible*.

Reduction lemma

Edges between two non-terminals are called *reducible*.

Theorem (Hind and Oellermann 1996)

If e is an reducible edge of G, then either G - e or G/e preserves global element-connectivity.

Reduction lemma

Edges between two non-terminals are called *reducible*.

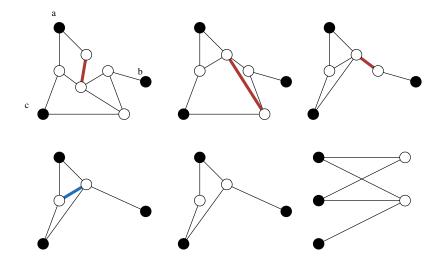
Theorem (Hind and Oellermann 1996)

If e is an reducible edge of G, then either G - e or G/e preserves global element-connectivity.

Theorem (Reduction Lemma (Chekuri and Korula 2009))

If e is an reducible edge of G, then either G - e or G/e preserves **local** element-connectivity.

Applying the reduction lemma



 $\kappa'_{G}(a,c) = 2, \ \kappa'_{G}(x,y) = 1 \text{ if } \{x,y\} \neq \{a,c\}.$

Flow-equivalent Tree

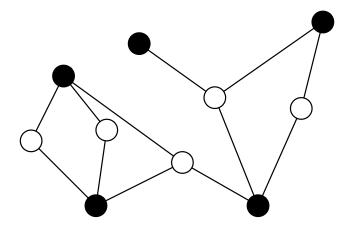
Definition

(R, w) is a flow-equivalent tree of G if

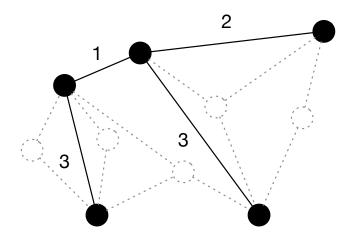
- R is a tree on T.
- **2** w is a weight function on E(R).

• For all $s, t \in T$, $\kappa'_G(s, t) = \min_{uv \in P_{st}} w(uv)$, where P_{st} is the st-path in R.

Example of a flow-equivalent tree



Example of a flow-equivalent tree



Our results

New proof of reduction lemma using bisubmodularity.Computational aspects of element-connectivity.

MF is the running time for maximum flow on a directed unit capacity graph on n vertices and m edges.

- Local element-connectivity: O(MF)
- All-pair element-connectivity: O(tMF)
- Global element-connectivity: same as all-pair element-connectivity
- Reduction: O(tnm)

Comparison of running time

	Global-conn	WHP	All-pair	WHP
edge	$\tilde{O}(m)$	$\tilde{O}(m)$	$\tilde{O}(n^{3.375})$	$\tilde{O}(nm)$
element	same as	all-pair	O(t MF)	$ ilde{O}(m^\omega)$
vertex	$O(n^{1.75}m)$	$\tilde{O}(nm)$	$O(n^{4.5})$	$\tilde{O}(n^{2+\omega})$

Reduction: naive algorithm

 \bigcirc If G is reduced, then we are done. Otherwise repeat.

Reduction: naive algorithm

Pick a reducible edge e in G

$G \leftarrow \begin{cases} G - e & \text{if } \kappa'_G(x, y) = \kappa'_{G-e}(x, y) \text{ for all } x, y \in T \\ G/e & \text{otherwise} \end{cases}$

- If G is reduced, then we are done. Otherwise repeat.
 - O(m) iterations.

2

- $O(t^2)$ local element-connectivity computations in each iteration.
- running time $O(t^2 mMF)$.

Simple speed-up

flow-equivalent tree

- reduce to t 1 maximum flows.
- 2 The flow-equivalent tree does not change through out the algorithm.
- 2 Maintain all the flows
 - Remove flow path using reduced edge.
 - Search for an augmenting path.

Running time improves to $O(tm^2)$.

Vertex elimination, pick a non-terminal v, either

- remove all reducible edges incident to v,
- **2** contract an reducible edge incident to v.

The right operation can be found and applied in O(tm) time, without guess and check.

Open problems

- Even faster algorithm for finding the reduced graph?
- What if only global element-connectivity has to be preserved?
- Find global element-connectivity faster than all-pair element-connectivity?