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element-connectivity

Undirected graph G = (V ,E ). T ⊂ V is a set of terminal vertices.
S = V \T is the set of non-terminal(Steiner) vertices.

Definition

The local element-connectivity κ′G (x , y) is the number of maximum
element-disjoint paths between x and y in G , where x , y ∈ T . The global
element-connectivity is the minimum of all local element-connectivity.
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Applications

1 Survivable network design

2 Packing element-disjoint Steiner trees

3 Network routing

4 ...
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Reduction lemma

Edges between two non-terminals are called reducible.

Theorem (Hind and Oellermann 1996)

If e is an reducible edge of G , then either G − e or G/e preserves global
element-connectivity.

Theorem (Reduction Lemma (Chekuri and Korula 2009))

If e is an reducible edge of G , then either G − e or G/e preserves local
element-connectivity.

Chekuri and Rukkanchanunt and Xu (UIUC)On element-connectivity preserving graph simplificationsSeptember 15, 2015 10 / 21



Reduction lemma

Edges between two non-terminals are called reducible.

Theorem (Hind and Oellermann 1996)

If e is an reducible edge of G , then either G − e or G/e preserves global
element-connectivity.

Theorem (Reduction Lemma (Chekuri and Korula 2009))

If e is an reducible edge of G , then either G − e or G/e preserves local
element-connectivity.

Chekuri and Rukkanchanunt and Xu (UIUC)On element-connectivity preserving graph simplificationsSeptember 15, 2015 10 / 21



Reduction lemma

Edges between two non-terminals are called reducible.

Theorem (Hind and Oellermann 1996)

If e is an reducible edge of G , then either G − e or G/e preserves global
element-connectivity.

Theorem (Reduction Lemma (Chekuri and Korula 2009))

If e is an reducible edge of G , then either G − e or G/e preserves local
element-connectivity.

Chekuri and Rukkanchanunt and Xu (UIUC)On element-connectivity preserving graph simplificationsSeptember 15, 2015 10 / 21



Applying the reduction lemma

a

b

c

κ′G (a, c) = 2, κ′G (x , y) = 1 if {x , y} 6= {a, c}.
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Flow-equivalent Tree

Definition

(R,w) is a flow-equivalent tree of G if

1 R is a tree on T .

2 w is a weight function on E (R).

3 For all s, t ∈ T , κ′G (s, t) = minuv∈Pst w(uv), where Pst is the st-path
in R.
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Example of a flow-equivalent tree
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Example of a flow-equivalent tree

2

3

1

3
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Our results

New proof of reduction lemma using bisubmodularity.
Computational aspects of element-connectivity.
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MF is the running time for maximum flow on a directed unit capacity
graph on n vertices and m edges.

1 Local element-connectivity: O(MF )

2 All-pair element-connectivity: O(tMF )

3 Global element-connectivity: same as all-pair element-connectivity

4 Reduction: O(tnm)
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Comparison of running time

Global-conn WHP All-pair WHP

edge Õ(m) Õ(m) Õ(n3.375) Õ(nm)

element same as all-pair O(t MF ) Õ(mω)

vertex O(n1.75m) Õ(nm) O(n4.5) Õ(n2+ω)
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Reduction: naive algorithm

1 Pick a reducible edge e in G

2

G ←

{
G − e if κ′G (x , y) = κ′G−e(x , y) for all x , y ∈ T

G/e otherwise

3 If G is reduced, then we are done. Otherwise repeat.

O(m) iterations.

O(t2) local element-connectivity computations in each iteration.

running time O(t2mMF ).
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Simple speed-up

1 flow-equivalent tree
1 reduce to t − 1 maximum flows.
2 The flow-equivalent tree does not change through out the algorithm.

2 Maintain all the flows
1 Remove flow path using reduced edge.
2 Search for an augmenting path.

Running time improves to O(tm2).
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Replace m with n

Vertex elimination, pick a non-terminal v , either

1 remove all reducible edges incident to v ,

2 contract an reducible edge incident to v .

The right operation can be found and applied in O(tm) time, without
guess and check.
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Open problems

1 Even faster algorithm for finding the reduced graph?

2 What if only global element-connectivity has to be preserved?

3 Find global element-connectivity faster than all-pair
element-connectivity?
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