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Abstract

A closed curve in the plane is weakly simple if it is the limit (in the Fréchet metric) of a sequence of simple
closed curves. We describe an algorithm to determine whether a closed walk of length n in a simple plane graph is
weakly simple in O(n log n) time, improving an earlier O(n3)-time algorithm of Cortese et al. [Discrete Math. 2009].
As an immediate corollary, we obtain the first efficient algorithm to determine whether an arbitrary n-vertex
polygon is weakly simple; our algorithm runs in O(n2 log n) time. We also describe algorithms that detect weak
simplicity in O(n log n) time for two interesting classes of polygons. Finally, we discuss subtle errors in several
previously published definitions of weak simplicity.

Dedicated with thanks to our colleague
Ferran Hurtado (1951–2014)

1 Introduction
Simple polygons in the plane have been standard objects of study in computational geometry for decades, and in
the broader mathematical community for centuries. Many algorithms designed for simple polygons continue to
work with little or no modification in degenerate cases, where intuitively the polygon overlaps itself but does not
cross itself. We offer the first complete and efficient algorithm to detect such degenerate polygons.

Formally, a closed curve in the plane is a continuous function P : S1 → R2. A closed curve is simple if it is
injective, and weakly simple if for any ε > 0, there is a simple closed curve whose Fréchet distance from P is at
most ε. A recent nontrivial result of Ribó Mor [39] implies that a polygon P with at least three vertices is weakly
simple if and only if, for any ε > 0, we can obtain a simple polygon by perturbing each vertex of P within a ball of
radius ε. See Figure 1.1 for some small examples.
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Figure 1.1. Top: Two weakly simple polygons from Meister’s seminal 1770 treatise on polygons [36]. Bottom: The polygon (a, x , b, x , c, x) is
weakly simple; the polygon (a, x , b, x , c, x , a, x , b, x , c, x) is not.

Unfortunately, neither of these definitions imply efficient algorithms to determine whether a given polygon is
weakly simple. Several authors have offered alternative characterizations of weakly simple polygons, all building
on the intuition that a weakly simple polygon does not “cross itself”. Unfortunately, none of these characterizations
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is entirely consistent with the formal definition, especially when the polygon contains spurs—vertices whose two
incident edges overlap. We discuss these earlier definitions in detail in Section 3.

We describe an algorithm to determine whether a closed walk of length n in a planar straight-line graph
is weakly simple in O(n log n) time. Our algorithm is essentially a more efficient implementation of an earlier
O(n3)-time algorithm of Cortese et al. [17] for the same problem. Since any n-vertex polygon can be subdivided
into a walk of length O(n2) in union of the polygon’s vertices and edges, we immediately obtain an algorithm to
decide whether a polygon is weakly simple in O(n2 log n) time. The quadratic blowup is caused by forks in the
polygon: vertices that lie in the interior of many overlapping collinear edges. For polygons without forks, the
running time is simply O(n log n). We also describe a simpler O(n log n)-time algorithm for polygons without spurs
(but possibly with forks).

Our paper is organized as follows. We review standard terminology and formally define weak simplicity in
Section 2, and discuss problems with previously published definitions in Section 3. In Section 4, as a warm-up
to our later results, we describe a simple algorithm to determine whether a polygon without spurs or forks is
weakly simple in O(n log n) time. Section 5 describes our O(n log n)-time algorithm for polygons without spurs,
but possibly with forks. We give a complete description of the algorithm of Cortese et al. for closed walks in planar
graphs, reformulated using our terminology, in Section 6 and then describe and analyze our faster implementation
in Section 7. We conclude in Section 8 by describing several extensions of our results and some interesting open
problems.

2 Background

2.1 Curves and Polygons

A path in the plane is formally defined as a continuous function P : [0,1]→ R2. A closed curve in the plane is any
continuous function P : S1→ R2. A path or closed curve is simple if it is injective.

A polygon is a piecewise-linear closed curve in the plane. Every polygon is defined by a cyclic sequence of
points, called vertices, connected by line segments, called edges. We often describe polygons by listing their
vertices in parentheses; for example, (p0, p1, . . . , pn−1) denotes the polygon with vertices pi and edges pi pi+1 mod n
for every index i. A polygon is simple if and only if its vertices are distinct and its edges intersect only at common
endpoints. We emphasize that the vertices of a non-simple polygon need not be distinct, and two edges of a
non-simple polygon may overlap or even coincide [25,36]. However, we do assume without (significant) loss of
generality that every edge of a polygon has positive length.

Similarly, a polygonal chain is a piecewise-linear path, which consists of a linear sequence of points (vertices)
connected by line segments (edges). We often describe polygonal chains by listing their vertices in square brackets,
like [p0, p1, . . . , pn−1], to distinguish them from polygons. A corner of a polygon or polygonal chain P is a subpath
[pi−1, pi , pi+1] consisting of two consecutive edges of P.

Three local features of polygons play important roles in our results. A spur of a polygon P is a vertex of P
whose two incident edges overlap. A fork of a polygon P is a vertex of P that lies in the interior of an edge of
P. Finally, a simple crossing between two paths is a point of transverse intersection: within any sufficiently small
neighborhood of the intersection point, the paths are homeomorphic to two intersecting straight lines. If the two
paths are polygonal chains, this intersection point could be a vertex of one or both paths.

2.2 Distances
Let d(p,q) denote the Euclidean distance between two points p and q in the plane. The Fréchet distance dF(P,Q)
between two closed curves P and Q is defined as

dF(P,Q) := inf
ρ : S1→S1

max
t∈S1

d(P(ρ(t)),Q(t)),

where the infimum is taken over all orientation-preserving homeomorphisms of S1. The function ρ is often called
a reparametrization of S1. Fréchet distance is a complete metric over the space of all (unparametrized) closed
curves in the plane. The Fréchet distance between paths is defined similarly.

The vertex distance dV(P, Q) between two polygons P = (p0, p1, . . . , pn−1) and Q = (q0, q1, . . . , qn−1) with the
same number of vertices is defined as

dV (P,Q) :=min
s

max
i

d(pi , qi+s mod n).

2



For each integer n, vertex distance is a complete metric over the space of all n-vertex polygons (where two polygons
that differ only by a cyclic shift of indices are identified).

2.3 Planar Graphs
A planar embedding of a graph represents the vertices by distinct points in the plane, and the edges by interior-
disjoint simple paths between their endpoints. Any planar graph embedding partitions the plane into several
regions, called the faces of the embedding. Euler’s formula states that any planar embedding of a connected graph
with V vertices and E edges has exactly 2−V + E faces. Any planar graph embedding can be represented abstractly
by a rotation system, which records for each vertex the cyclic sequence of incident edges [37].

A planar straight-line graph is a planar graph embedding in which every edge is represented by a single line
segment. Planar straight-line graphs can be represented by several data structures, each of which allows fast
access to the abstract graph, the coordinates of its vertices, and the rotation system of its embedding. Two popular
examples are the quad-edge data structure [26] and the doubly-connected edge list [5].

2.4 Weak Simplicity
Intuitively, a closed curve or polygon is weakly simple if it can be made simple by an arbitrarily small perturbation,
or equivalently, if it is the limit of a sequence of simple closed curves or polygons. Our two different metrics for
curve similarity give us two different formal definitions, one for arbitrary closed curves and the other only for
polygons:

• A closed curve P is weakly simple if, for any ε > 0, there is a simple closed curve Q such that dF(P,Q)< ε.
In other words, a closed curve is weakly simple if it can be made simple by an arbitrarily small perturbation
of the entire curve.

• A polygon P is rigidly weakly simple if, for any ε > 0, there is a simple polygon Q with the same number of
vertices such that dV (P,Q)< ε. In other words, a polygon is rigidly weakly simple if it can be made simple
by an arbitrarily small perturbation of its vertices.

For any two polygons P and Q with the same number of vertices, we have dF(P,Q) ≤ dV (P,Q); thus, every
rigidly weakly simple polygon is also weakly simple. The following theorem, whose proof we defer to the full
version of our paper, implies that the two definitions are almost equivalent for polygons.

Theorem 2.1 Every weakly simple polygon with more than two vertices is rigidly weakly simple.

Our proof relies on a nontrivial result of Ribó Mor [39, Theorem 3.1] (previously conjectured by Connelly
et al. [16, Conjecture 4.1]) about “self-touching” linkage configurations. The restriction to polygons with more
than two vertices is necessary; every polygon with at most two vertices is weakly simple, because it is a degenerate
ellipse, but not rigidly weakly simple, because every simple polygon has at least three vertices.

3 Problems with Earlier Definitions
Many authors have offered the intuition that a polygon is weakly simple if and only if it “does not cross itself”;
indeed, this is the complete definition offered in a few papers [1,30]. However, correctly formalizing this intuition
involves several subtleties that do not appear to have been previously recognized in the literature. Perhaps because
of these subtleties, we are unaware of any previous algorithm to determine whether an arbitrary given polygon is
weakly simple.

3.1 Crossing
We believe the following topological definitions of “crossing” and “self-crossing” are the most natural and general.
Two paths P and Q are weakly disjoint if, for all sufficiently small ε > 0, there are disjoint paths P̃ and Q̃ such
that dF(P, P̃)< ε and dF(Q, Q̃)< ε; in other words, two paths are weakly disjoint if they can be made disjoint
by arbitrarily small perturbations. Two paths cross if they are not weakly disjoint. Finally, a closed curve is
self-crossing if it contains two crossing subpaths.1

However, this is not the definition of “crossing” that most often appears in the computational geometry
literature; variants of the following combinatorial definition are much more common [10, 19, 34, 47]. Two

1One can similarly define rigidly self-crossing polygons in terms of vertex distance; Ribó Mor’s theorem [39] implies that these definitions
are equivalent for polygons.
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polygonal chains P = [p0, p1, . . . , p`] and Q = [q0, q1, . . . , q`] with length ` ≥ 3 have a forward crossing if they
satisfy two conditions:

• pi = qi for all 1≤ i ≤ `− 1, and

• the cyclic order of p0, q0, p2 around p1 is equal to the cyclic order of p`, q`, p`−2 around p`−1.

Polygonal chains P and Q have a backward crossing if P and the reversal of Q have a forward crossing. (See
Figure 3.1.) Finally, two polygonal chains P and Q cross if some subpaths of P and Q have a simple crossing, a
forward crossing, or a backward crossing.

Figure 3.1. A forward crossing and a backward crossing. The paths coincide within the clouds.

These two definitions of “crossing” appear to be equivalent for polygonal chains without spurs or forks, but they
are not equivalent in general; Figure 3.2 shows three simple examples where the definitions differ. In fact, we
know of no combinatorial definition of “crossing” that agrees with our topological definition for arbitrary polygonal
chains with spurs.

x y z
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Figure 3.2. Three pairs of crossing paths that do not satisfy the combinatorial definition. Vertices in each small circle coincide; in the bottom
right example, vertices p, q, r, s are collinear.

Even in contexts where this combinatorial definition of “crossing” agrees with our topological definition, it
is unclear how to use it to quickly determine whether a polygon is weakly simple. Given a polygon P without
spurs, there is a natural algorithm to determine whether P is (combinatorially) self-crossing in O(n3) time—Find
all maximal coincident subpaths via dynamic programming, and then check whether each one is a forward or
backward crossing—but this is considerably slower than the algorithms we derive in this paper using the topological
definition of “weakly simple”.

Several other authors (including the second author of this paper) have proposed the following more intuitive
definition [22, 44, 49]: Two paths P and Q “cross” if, for arbitrarily small neighborhoods U of some common
subpath, path P contains a point in more than one component of ∂U \Q; see Figure 3.3(a). This definition is correct
when P and Q are simple, but it yields both false positives and false negatives for non-simple paths, even without
spurs. For example, the paths [w, x , y, z, x , y] and [z, x , y, z, x , w] in Figure 3.3(b) cross but do not satisfy this
definition (because P has no points in ∂U \Q), and the paths [a, x , y, z, b] and [c, x , y, z, d] in Figure 3.3(c) do not
cross but satisfy this definition (because small neighborhoods of the common subpath are not simply connected).
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Figure 3.3. (a) A common intuitive definition of “crossing”. (b) Two crossing paths that do not satisfy this definition. (c) Two non-crossing
paths that do satisfy this definition. Vertices in each small circle coincide.

3.2 Weak Simplicity
Avoiding self-crossings is a necessary condition for a polygon to be weakly simple, but it is not sufficient. For
example, polygon that wraps 3 times around triangle (as considered by Meister [36]; see Figure 3.4) and the
polygon (a, x , b, x , c, x , a, x , b, x , c, x) in Figure 1.1 are neither self-crossing nor weakly simple.

Figure 3.4. Meister’s enneagon [a, b, c,α,β ,κ, A, B, C] is neither weakly simple nor self-crossing.

Toussaint [10,44,47,48] defines a polygon to be weakly simple if its rotation number is either +1 or −1 and
any pair of points splits the polygon into two polygonal chains that do not cross. Here, the rotation number
of a polygon is the sum of the signed external angles at the vertices of the polygon, divided by 2π, where each
external angle is normalized to the interval (−π,π). Unfortunately, the rotation number of a polygon with spurs is
undefined, since there is no way to determine locally whether the external angle at a spur should be π or −π. As a
result, Toussaint’s definition can only be applied to polygons without spurs.

Even for polygons without spurs, there is a more subtle problem with Toussaint’s definition. Consider the 14-
vertex polygon (a, b, c, a, b, c, a, x ,y, z, x ,y, z, x) shown in Figure 3.5. This polygon contains exactly two crossings:
one between subpaths [x , a, b, c, a, b] and [c, a, b, c, a, x], and the other between subpaths [a, x ,y, z, x ,y] and
[z, x ,y, z, x , a]. However, both pairs of crossing subpaths overlap not just geometrically, but combinatorially, as
substrings of the polygon’s vertex sequence. In short, a polygon (or polygonal chain) can cross itself without
being divisible into two paths that cross each other! Demaine and O’Rourke’s definition of a self-crossing linkage
configuration [19] has the same problem. (Their definition also does not consider the possibility of backward
crossings.)

Several other papers offer definitions of “weakly simple” that are overly restrictive [7,8,28,35,41]. For example,
the LEDA software library [35] defines a polygon to be weakly simple if it has coincident vertices but otherwise
disjoint edges; Bose and Morin [7,8] define a polygon to be weakly simple if the graph G defined by its vertices
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Figure 3.5. A polygon (a, b, c, a, b, c, a, x , y, z, x , y, z, x) that is not weakly simple, even though its rotation number is 1 and every pair of
vertices splits the polygon into two paths that do not cross.

and edges is plane, the outer face of G is a cycle, and one bounded face of G is adjacent to all vertices. It is
straightforward to construct weakly simple polygons that contradict these definitions.

Finally, several recent papers [18, 21, 29, 32] define weak simplicity directly in terms of vertex perturba-
tion—what we call rigid weak simplicity—without mentioning any connection to the more general (and arguably
more natural) definition in terms of Fréchet distance.

3.3 All Is Not Lost
We emphasize that the algorithms in all the papers discussed in this section appear to be correct. The inputs to these
algorithms are simple polygons, polygons with holes, or planar straight-line graphs, composed of line segments
that intersect only at common endpoints. The algorithms construct weakly simple polygons only as intermediate
results, and always with additional structure that is consistent with the definitions in the corresponding papers.
More importantly, in each case, the perturbations required to make those polygons simple are implicit in their
construction.

4 No Spurs or Forks
In this section, we describe an algorithm to determine whether a polygon without spurs or forks is weakly simple in
O(n log n) time. Although we have not seen a complete description of this algorithm in the literature, it is essentially
folklore. Similar techniques were previously used by Reinhart [38], Zieschang [50], and Chillingworth [14] to
determine whether a given closed curve in an arbitrary 2-manifold with boundary is homotopic to a simple closed
curve, and more recently by Cortese et al. [17] to determine clustered planarity of closed walks in plane graphs.

Let P = (p0, . . . , pn−1) be an arbitrary polygon without spurs or forks. The algorithm consists of three phases.
First, we construct the image graph of P, to identify all coincident vertices and edges and to rule out simple
crossings between edges of P. Second, we look for simple crossings at the vertices of P. Finally, if there are no
simple crossings, we “inflate” P into a nearby 2-regular plane graph in the only consistent manner possible, and
then check whether the expansion is consistent with P.

The description and analysis of our algorithm use the following multiplicity functions: n(u) denotes the number
of times the point u occurs as a vertex of P; n(uv) denotes the number of times the line segment uv occurs (in
either orientation) as an edge of P; and n(uv w ) denote the number of times the corner [u, v, w] or its reversal
[w, v, u] occurs in P.

4.1 Constructing the Image Graph
In the first phase, we determine in O(n log n) time whether any two edges of P cross, using the classical sweep-line
algorithm of Shamos and Hoey [43]; if so, we immediately halt and report that P is not weakly simple. Otherwise,
the image of P is a planar straight-line graph G, whose vertices we call nodes and whose edges we call segments,
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Figure 4.1. Left column: Expanding a node in G. Top row: If P is weakly simple, there is a simple polygon Q arbitrarily close to P. Right
column: Modifying Q to mirror the node expansion. Bottom row: Inflating G̃ into a simple 2-regular plane graph Q̃.

to distinguish them from the vertices and edges of P. Specifically, the nodes of G are obtained from the vertices of
P by removing duplicates, and the segments of G are obtained from the edges of P by removing duplicates. The
image graph G can be constructed in O(n log n) time using, for example, a straightforward modification of Shamos
and Hoey’s sweep-line algorithm. This is the most time-consuming portion of our algorithm; the other two phases
each require only O(n) time.2

4.2 Node Expansion
In the second phase, since we have already ruled out simple crossings in the interiors of edges, any simple crossing
in P must consist of two corners [u, v, w] and [x , v, y] whose endpoints have the cyclic order u, x , w, y around
their common middle vertex v. We can detect all such crossings in O(n) time using an operation we call node
expansion, defined geometrically as follows. (Cortese et al. [17] call this operation a cluster expansion.)

Let u be an arbitrary node in G. Consider a disk Du of radius δ centered at u, with δ chosen sufficiently small
that Du intersects only the segments of G incident to u. Because segments of G are straight line segments, the
circle ∂Du intersects each segment at most once. On each segment ux incident to u, we introduce a new node [ux]
at the intersection point ux ∩ ∂Du. Then we modify P by replacing each maximal subpath in Du with a straight
line segment. Thus, if P contains the subpath [x , u, y], the modified polygon contains the edge [ux][uy]. (We
emphasize here that because P has no spurs, points x and y must be distinct and therefore [ux] and [uy] are
distinct as well.) Let P̃ denote the modified polygon, and let G̃ denote the image of P̃ in the plane; see the left
column of Figure 4.1.

In Section 4.4, we prove that the original polygon P is weakly simple if and only if the expanded polygon P̃ is
weakly simple. If P has a simple crossing at u, then some pair of edges of P̃ cross inside Du. We describe how to
quickly check for such crossings in Section 4.5.

Altogether, expanding node u and checking for simple crossings requires O(n(u)) time; thus, we can expand
every node of G in O(n) time overall. If any node expansion creates a simple crossing, we halt immediately and
report that P is not weakly simple. Otherwise by induction, G̃ is a plane graph, and P is weakly simple if and only
if P̃ is weakly simple.

4.3 Global Inflation

In the final phase of the algorithm, we “inflate” the image graph G̃ into a 2-regular plane graph Q̃ by replacing
each segment s of G̃ with several parallel segments, one for each edge of P̃ that traverses s; see the bottom row of
Figure 4.1. Then P̃ (and therefore P) is weakly simple if and only if Q̃ is connected and consistent with P̃.

Fix an arbitrarily small positive real number ε� δ. To construct Q̃ from G̃, we replace each node [uv] with a
sequence of n(uv) closely spaced points [uv]1, [uv]2, . . . , [uv]n(uv) on ∂Du, all within ε of the original node [uv].
Then we replace each segment [uv][vu] of G̃ outside the disks with n(uv) parallel segments. Finally, within each
disk Du, we replace each corner segment [uv][uw] with n(uvw) parallel segments [uv]i[uw] j , so that all resulting
segments in Du are disjoint.

2We conjecture that the image graph of a weakly simple polygon can actually be constructed in O(n log∗ n) or even O(n) time, by a suitable
modification of algorithms for triangulating simple polygons [2,13,15,20,42].

7



Crucially, once the points [uv] on the boundary of Du are fixed, there is exactly one way to perform this
final replacement within Du so that the resulting segments are consistent with P̃. Moreover, we can find these
replacement segments in O(n(u)) time as follows. Let G̃u be the restriction of G̃ to the disk Du, together with arcs
of ∂Du between successive nodes. Because G̃u is outer-planar, its dual is an apex graph over a tree T , where the
apex node is dual to the outer face. Subdivide the edges of T , replacing the edge dual to [uv][uw] with a path of
length n(vuw), to obtain a new tree T ′. The replacement segments in Q̃ are dual to the subdivided edges of T ′.
See [6,11,12] for related constructions.

The uniqueness of Q̃ implies P̃ is weakly simple if and only if (1) the resulting 2-regular graph Q̃ is connected
and thus a simple polygon, and (2) we have dV (P̃, Q̃)< ε. We can check whether Q̃ is connected in O(n) time by
depth-first search. Finally, if Q̃ is a simple polygon, we can determine whether dV (P̃, Q̃)< ε in O(n) time using
any fast string-matching algorithm.

Theorem 4.1 Given an arbitrary n-vertex polygon P without spurs or forks, we can determine in O(n log n) time
whether P is weakly simple.

4.4 Expansion Proofs
As promised, we now prove that node expansions preserve weak simplicity.

Lemma 4.2 (Cortese et al. [17, Lemma 2]) Let P be an arbitrary polygon, and let P̃ be the result of a single node
expansion. If P̃ is weakly simple then P is also weakly simple.

Proof: Suppose P̃ is weakly simple. Fix a sufficiently small positive real number ε < δ. By Theorem 2.1, there is a
simple polygon Q̃ such that dF(P̃, Q̃)≤ dV (P̃, Q̃)< ε. (See Figure 4.1.) We easily observe that dF(P, P̃)< δ. Thus,
the triangle inequality implies

dF(P, Q̃) < dF(P, P̃) + dF(P̃, Q̃) < δ+ ε < 2δ.

Because δ is arbitrarily small, we conclude that P is weakly simple. �

To prove the converse of Lemma 4.2, we actually consider a more general expansion operation, defined as
follows. Let P = (p0, p1, . . . , pn−1) be an arbitrary polygon, and let D be an arbitrary elliptical disk that intersects
P transversely; that is, the boundary ellipse ∂D intersects at least one edge of P, is not tangent to any edge of P,
and does not contain any vertex of P. To expand P inside D, we subdivide the edges of P that intersect ∂D by
introducing new vertices at the intersection points, and then replace each maximal subpath of P inside D with a
straight line segment between its endpoints on ∂D. Finally, we remove any boundary-to-boundary segments with
length zero by merging their coincident endpoints.

Lemma 4.3 Let P be an arbitrary polygon; let D be an elliptical disk whose boundary intersects P transversely; and
let P̃ be the result of expanding P inside D. If P is weakly simple, then P̃ is also weakly simple.

Proof: Suppose polygon P = (p0, p1, . . . , pn−1) is weakly simple. By Theorem 2.1, for any real number ε > 0, there
is a simple polygon Q = (q0, q1, . . . , qn−1) such that dV (P,Q) < ε. If ε is sufficiently small, ∂D also intersects Q
transversely; moreover, ∂D intersects an edge of Q if and only if it intersects the corresponding edge of P in the
same number of points. Let Q̃ be the polygon obtained by expanding Q inside D. See Figure 4.2.

Because Q is simple, the intersection Q ∩ D consists of disjoint simple subpaths. For any two such subpaths α
and β , the endpoints of α must lie in one component of ∂D \β , and thus the corresponding line segments α̃ and β̃
of Q̃ are also disjoint. It follows that Q̃ is also simple.

Consider a vertex p̃ of P̃, located at the intersection of an edge pi pi+1 of P and the ellipse ∂D. Let θ denote
the angle between pi pi+1 and (the line tangent to) ∂D at p̃. If ε is sufficiently small, the corresponding edge qiqi+1
of Q intersects ∂D at a point q̃ such that d(p̃, q̃)< 2ε/ sinθ . It follows that dV (P̃, Q̃)< 2ε/ sinθ ∗, where θ ∗ is the
minimum angle of intersection between P and ∂D.

Thus, for any δ > 0, we obtain a simple polygon Q̃ such that dF(P̃, Q̃) < δ by setting ε < (δ/2) sinθ ∗. We
conclude that P̃ is weakly simple. �

Unfortunately, the converse of Lemma 4.3 is not true in general. For example, the polygon (w, x , u, y, z, u, v, u)
in Figure 4.3 is not weakly simple, because it contains two subpaths [w, u, v] and [x , u, z] that cross transversely at u,
but expanding it inside a disk D around segment uv produces the weakly simple polygon (w, x , [ux], [uy], y, z, [uz], [uw]),
where for example [ux] denotes the point ux ∩ ∂D.
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Figure 4.2. Left column: Expanding the image graph G. Top row: If P is weakly simple, there is a nearby simple polygon Q. Right column:
Expanding Q in the same ellipse yields a simple polygon Q̃. Bottom row: Q̃ is close to P̃. Compare with Figure 4.1.
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Figure 4.3. Careless expansion of a polygon that is not weakly simple can produce a weakly simple polygon. (The three vertices in the small
circle actually coincide.)

4.5 Implementation and Planarity Checking

Given a polygon P and an ellipse D, it is straightforward to compute the polygon P̃ resulting from expanding P
inside D in O(n) time by brute force. For arbitrary expansions, computing and sorting the coordinates of the
intersection points with the ellipse ∂D requires some care. In our algorithms, however, all expansion operations
can be performed combinatorially, with no numerical computation whatsoever. The actual size and shape of the
disk D is completely immaterial to our algorithms; our geometric description in terms of ellipses is intended only
to provide intuition and simplify our proofs of correctness. In particular, we never need to choose explicit values
for the parameters δ and ε.

Our algorithms maintain a representation of the polygon P that allows us to compute the sequence of points
where P crosses ∂D, in cyclic order around D, in constant time per intersection point. Specifically, for the node
expansions applied in this section, this sequence can be extracted directly from the rotation system of the image
graph G, which records the cyclic order of segments incident to each node. (For our later applications of expansion,
extracting the sorted sequence of points around ∂D is only slightly more complex.) Given this sequence of points,
which become the new vertices of P̃, we can perform the rest of the expansion in O(m) time, where m is the
number of edges of P that intersect D.

If P is not weakly simple, the expanded polygon P̃ may include pairs of edges that cross transversely. Let GD
denote the graph whose nodes are the intersection points im P ∩ ∂D and whose segments are distinct edges of P̃
inside D and arcs of ∂D between vertices in cyclic order. Polygon P̃ contains crossing edges if and only if GD is not
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a plane graph.
We can determine the planarity of GD as follows. First, add a new “apex” node and connect it by segments to

each of the nodes of GD. The resulting abstract graph G+D is 3-connected, and therefore has at most one planar
embedding. Moreover, G+D is planar if and only if there is a planar embedding of GD with all nodes on a single
face (which we take to be the outer face) in the correct cyclic order. Thus, GD is a plane graph if and only if G+D is
a planar graph; there are several linear-time algorithms to determine whether a graph is planar [9,24,31,45].
Crudely, GD has at most O(m) nodes and segments, so the planarity check takes at most O(m) time.

5 Forks But No Spurs
Recall that a fork in a polygon is a vertex that lies in the interior of an edge. With only minor modifications, the
algorithm in the previous section can also be applied to polygons with forks, but still without spurs. Specifically, in
a preprocessing phase, we find all incident vertex-edge pairs in O(n log n+ k) time, where k = O(n2) is the number
of such pairs, using a simple modification of the standard Bentley-Ottmann sweep-line algorithm [4]. Whenever
we discover an incident vertex-edge pair, we subdivide that edge at the incident vertex in O(1) additional time. The
remainder of the weak simplicity algorithm is unchanged. In the worst case, subdividing the polygon to eliminate
forks increases its complexity from n to Θ(n2), which in turn increases the overall running time of our algorithm
from O(n log n) to O(n2 log n). With more care, however, we can avoid this quadratic blowup.

We define a coarser decomposition of the image of P into points and line segments called a bar decomposition,
as follows. A bar of P is a component of the union of the interiors of all edges of P that lie on a common line.
Every fork lies in exactly one bar; we call any vertex that is not in a bar sober. The bar decomposition consists of
all bars of P and all distinct sober vertices of P; the image of P is equal to the union of these bars and points. If P
has no forks, the bar decomposition consists of the nodes and segments of the image graph G.

Figure 5.1. A bar decomposition of a weakly simple polygon without spurs, and a nearby simple polygon.

We can compute the bar decomposition of P in O(n log n) time as follows. First, cluster the edges of P into
collinear subsets, by sorting them by the slopes and y-intercepts of their supporting lines. Then for each collinear
subset, sort the endpoints by x-coordinate, breaking ties by sorting all right endpoints before all left endpoints.
Finally, a linear-time scan along each sorted collinear subset of edges yields all bars that lie on that line. We also
identify all distinct sober vertices, compute (the indices of) all vertices and edges of P that lie in each bar, and
compute the bars incident to each fork in cyclic order. Finally, we verify that no pair of bars crosses, using a
standard sweep-line algorithm [43].

Next we perform a node expansion at each sober node, as described in the previous section. We also perform
a bar expansion around each bar, defined as follows. For any bar b, let b◦ denote the subset of b obtained by
removing all points within distance 2δ of endpoints of b, and let Db denote an elliptical disk whose major axis is
b◦ and whose minor axis has length 2δ, where the parameter δ is chosen so that Db intersects only the edges of P
that also intersect the bar. We emphasize that the endpoints of the bar b are outside Db. Then bar expansion is
just expansion inside the disk Db, as described in Section 4.4. That is, we subdivide P at the intersection points
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Figure 5.2. Bar expansion. Compare with Figure 4.1.

im P ∩ ∂Db, replace each maximal subpath of P inside Db with a line segment, and finally verify that these new
segments do not cross, as described in Section 4.5.

Again, there is no need to choose a specific value of δ; each bar expansion is performed entirely combinatorially.
In particular, the sorted sequence of new nodes around ∂Db can be extracted in O(1) time each from the order of
forks along b and the cyclic order of bars ending at each fork in b; both of these orders are computed as part of
the bar decomposition. Since every edge of P touches at most three bars or sober nodes, we can expand every
bar and every sober node in O(n) time. The resulting polygon P̃ has no simple crossings, no forks, and no spurs.
Lemmas 4.2, 4.3, and 5.1 (proved below) imply inductively that P̃ is weakly simple if and only if the original
polygon P is weakly simple. Finally, we can determine whether P̃ is weakly simple in O(n) time using the global
inflation algorithm described in Section 4.3.

It remains only to prove that bar expansion properly preserves weak simplicity.

Lemma 5.1 Let P be an arbitrary polygon without spurs, and let P̃ be the result of a single bar expansion. P is
weakly simple if and only if P̃ is weakly simple.

Proof: Let b be the bar around which we are expanding, and let θ > 0 denote the minimum positive angle
between b and any edge incident to but not contained in b. Consider a subpath [u, v, w, x] of P such that vw lies in
the interior of Db and therefore in the bar b; vertices u and x must lie outside Db. Let ṽ = uv∩∂Db and w̃ = wx∩∂Db;
the line segment ṽw̃ is an edge of the expanded polygon P̃. We easily observe that d(v, ṽ)≤ δ/ sin∠uvw≤ δ/ sinθ
and d(w, w̃) ≤ δ/ sin∠vwx ≤ δ/ sinθ , which implies that dF([u, v, w, x], [u, ṽ, w̃, x]) ≤ δ/ sinθ . By similar
arguments for edges that share one or both endpoints of b, we conclude that dF(P, P̃)< δ/ sinθ .

If P̃ is weakly simple, there is a simple polygon Q̃ such that dF(P̃, Q̃)≤ dV (P̃, Q̃)< δ, which implies

dF(P, Q̃) < dF(P, P̃) + dF(P̃, Q̃) < δ(1+ 1/ sinθ )

by the triangle inequality. Since this Fréchet distance can be made arbitrarily small by shrinking δ, we conclude
that P is weakly simple.

Lemma 4.3 immediately implies that if P is weakly simple, then P̃ is weakly simple. �

We emphasize that if the polygon P has spurs, then bar expansions are no longer safe; the resulting polygon P̃
could be weakly simple even though P is not.

Theorem 5.2 Given an arbitrary n-vertex polygon P without spurs, but possibly with forks, we can determine in
O(n log n) time whether P is weakly simple.

6 Polygons with Spurs
Neither of the previous algorithms is correct when the input polygon has spurs. To handle these polygons, we
apply a recent algorithm of Cortese et al. [17] to determine whether a walk in a plane graph is weakly simple (in
their terminology, whether a rigid clustered cycle is c-planar). We include a complete description of the algorithm
here, reformulated in our terminology, not only to keep this paper self-contained, but also so that we can improve
its running time in Section 7.

At a high level, the algorithm proceeds as follows. In an initial preprocessing phase, we construct the image
graph G of the input polygon P and then expand P at every node in G. (We must make one small change to the
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node expansion operation: After expanding around any spur, we remove any zero-length edges. Thus, expanding
around a spur u replaces any subpath of the form [x , u, x] with x[ux]x instead of x[ux][ux]x .) Then, following
Cortese et al. [17], we repeatedly modify the polygon using an operation we call segment expansion, defined in
Section 6.1, until either we detect a simple crossing (in which case P is not weakly simple), the image graph is
reduced to a single line segment (in which case P is weakly simple), or there are no more “useful” segments to
expand.

If the input polygon has no forks, we construct the image graph G in O(n log n) time and then expand every
node in O(n) time, exactly as described in Section 4. A simple potential argument, given in Section 6.3, implies
that the main loop terminates after at most O(n) segment expansions. (Cortese et al. [17] prove an upper bound of
O(n2) expansions using a different potential function.) A naïve implementation executes each segment expansion
by brute force in O(n) time, giving us an overall running time of O(n2).

Theorem 6.1 Given an arbitrary n-vertex polygon P without forks but possibly with spurs, we can determine in O(n2)
time whether P is weakly simple.

Any polygon with n vertices can be subdivided at the forks into a polygon with O(n2) vertices and without
forks in O(n2) time using a standard sweep-line algorithm, as described in Section 5. Thus, Theorem 6.1 has the
following immediate corollary.

Corollary 6.2 Given an arbitrary n-vertex polygon P, we can determine in O(n4) time whether P is weakly simple.

For the remainder of the paper, we assume that the input polygon P has no forks.

6.1 Segment Expansion
We now describe the main loop of our algorithm in more detail. The main operation, segment expansion, is nearly
identical to our earlier expansion operations. Let s be an arbitrary segment of the current image graph G. Let Ds
be an elliptical disk whose boundary intersects precisely the segments that share one endpoint with s. To expand
segment s, we subdivide P at its intersection with ∂Ds, replace each maximal subpath of P that lies in Ds with a
line segment, and verify that the new segments do not cross.

Unfortunately, as we have already seen in Figure 4.3, arbitrary segment expansions could change a polygon
that is not weakly simple into a polygon that is weakly simple. To avoid this behavior, our algorithm expands only
segments with the following property. A segment uv in the image graph is a base of one of its endpoints u if every
occurrence of u in the polygon P is immediately preceded or followed by the other endpoint v. A segment is safe
if it is a base of both of its endpoints. Our algorithm only performs segment expansions around safe segments.

In Section 6.4 below, we prove that safe segment expansions properly preserve weak simplicity. That is, if P̃ is
the result of a safe segment expansion on P, then P is weakly simple if and only if P̃ is weakly simple.

After a node expansion around any node u (as defined in Section 4.2), each new node [ux] on the boundary
of Du has a base, namely the segment [ux]x [17, Property 5]. Thus, expanding every node in the original image
graph guarantees that every node in the image graph has a base. Similarly, after any segment expansion, every
newly created node has a base. Thus, our algorithm inductively maintains the invariant that every node in the
image graph has a base.

It follows that among all the segments incident to any node u, any segment uv with maximum multiplicity
n(uv) is a base of u. (If u has two bases uv and uw, those are the only segments incident to u, every corner at u
has the form [v, u, w] or [w, u, v], and thus n(uv) = n(uw) = n(vuw) = n(u). No node can have more than two
bases.) Therefore, any segment in G with globally maximum multiplicity is a base of both of its endpoints. We
conclude that at every iteration of our algorithm, the image graph G contains at least one safe segment, and so our
algorithm never gets stuck.

6.2 Useful Segments
However, under some circumstances, expanding a safe segment does not actually make progress. Specifically, if
both endpoints of the segment have degree 2 in G, and no spur in P includes that segment, the segment expansion
does not change the combinatorial structure of P or G at all. We call any such segment useless. Equivalently, a
safe segment is useful if it is the only base of one of its endpoints, and useless otherwise. Our algorithm repeatedly
expands only useful segments until either the image graph consists of a single segment (in which case P is weakly
simple) or there are no more useful segments to expand.

12



Lemma 6.3 Let G be the image graph of a polygon P without simple crossings. If every node of G has a base but G
has no useful segments, then G is a simple polygon and P has no spurs.

Proof: Let m=maxuv n(uv) be the maximum multiplicity among all segments of G, and let H be the subgraph
of G induced by all segments with multiplicity m, together with their endpoints. (Recall that every segment in H
is safe, although there may be safe segments not in H.) The degree of any node in H is at most the number of
bases of that node in G. Since no node in G can have more than two bases, H is the union of disjoint cycles and
nontrivial paths. If some component of H is a path, the first (or last) segment in that path is useful. Otherwise,
every node in G has two bases, and therefore has degree 2; because G is a connected planar straight-line graph, it
must be a simple polygon. Moreover, because every node in G has two bases, P has no spurs. �

Lemma 6.3 implies that when our main loop ends, we can invoke our algorithm for spur-free polygons in
Section 4. But this is overkill. Because P has no spurs, P must traverse every segment of G the same number of
times. It follows that the 2-regular plane graph Q̃ constructed in the inflation phase of the algorithm in Section
4 will consist of n(uv) parallel copies of G. Thus, when the main loop ends, P is weakly simple if and only if
n(uv) = 1, for any single segment uv.

6.3 Termination and Analysis
Like Cortese et al., we prove that our algorithm halts using a potential argument. Let |P| and |G| respectively
denote the number of vertices in polygon P and the number of nodes in its image graph G; our potential function
is Φ(P, G) := 2 |P| − |G|. Clearly Φ(P, G) is always non-negative. Performing the initial node expansions at most
doubles |P|, so at the beginning of the main loop we have Φ(P, G) ≤ 4n. (Cortese et al. used the potential
∑

s n(s)2 = O(n2), where the sum is over all segments of G; otherwise, our analysis is nearly identical.)

Lemma 6.4 Let P be any polygon whose image graph G has more than one segment, let P̃ be the result of expanding
a useful segment of G, and let G̃ be the image graph of P̃. Then Φ(P̃, G̃)< Φ(P, G).

Proof: Let uv be a useful segment of G, where without loss of generality we have deg(u)≤ deg(v). Because uv is
safe, every maximal subpath of P that lies in the ellipse Duv contains at least 2 vertices, so

�

�P̃
�

� ≤ |P|. We easily
observe that

�

�G̃
�

� = |G|+ deg(u) + deg(v)− 4, so if deg(u) + deg(v) > 4, the proof is complete. There are three
other cases to consider:

• If deg(u) = deg(v) = 1, then uv is the only segment of G, which is impossible.

• Otherwise, if deg(u) = 1, then P must contain the spur [v, u, v], which implies
�

�P̃
�

�≤ |P| − 1 and therefore
Φ(P̃, G̃)≤ Φ(P, G)− (deg(v)− 1)≤ Φ(P, G)− 1.

• Finally, suppose deg(u) = deg(v) = 2. Because uv is useful, P must contain one of the spurs [v, u, v] or
[u, v, u], which implies

�

�P̃
�

�≤ |P| − 1 and therefore Φ(P̃, G̃)≤ Φ(P, G)− 2. �

Lemma 6.4 immediately implies the main loop of the algorithm ends after at most 4n segment expansions.
Because the potential Φ decreases at every iteration, the polygon never has more than 4n vertices. We can find a
useful segment in the image graph (if one exists) and perform a segment expansion in O(n) time by brute force.
Thus, a naïve implementation of our algorithm runs in O(n2) time.

6.4 Safe Segment Expansion
As promised, we now prove that expanding around a safe segment properly preserves weak simplicity. This key
lemma was was previously proved by Cortese et al. [17, Lemma 3] using different terminology and techniques; to
keep this paper relatively self-contained, we provide a new geometric proof.

To simplify our argument, we imagine that each segment expansion is preceded by a spur reduction, which
replaces any subpath [u, v, . . . , u, v] that alternates between nodes u and v at least twice with the single edge
[u, v]. For example, the subpath [a, u, v, u, v, u, b] would become a single spur [a, u, v, u, b], and the subpath
[a, u, v, u, v, u, v, u, v, z] would become a simple subpath [a, u, v, z].

Lemma 6.5 Let P be any polygon, and let P̄ be the result of a spur reduction on some segment uv of its image graph.
If P̄ is weakly simple, then P is weakly simple.
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Proof: It suffices to consider the case where P̄ is obtained from P by replacing exactly one subpath [a, u, v, u, v, z]
with the simpler subpath [a, u, v, z], for some nodes a 6= v and z 6= u. The argument for paths of odd length is
similar, and the general case then follows by induction.

Suppose P̄ is weakly simple. Then by Theorem 2.1 for any ε > 0, there is a polygon Q̄ with dV (P̄, Q̄)< ε. Let
[a′, u′, v′, z′] be the subpath of Q̄ corresponding to the replacement subpath [a, u, v, z] of P̄. If ε is sufficiently
small, we can find four points u1, u2, v1, v2 with the following properties:

• d(u1, u′) = d(u2, u′) = d(v1, v′) = d(v2, v′) = ε,

• d(u1, u′v′) = d(u2, u′v′) = ε2 = d(v1, u′v′) = d(v2, u′v′) = ε2,

• the path [u′, u1, v1, u2, v2, v′] is simple and intersects Q̄ only at the edge u′v′.

Let Q be the simple polygon obtained by replacing the edge [u′, v′] with [u′, u1, v1, u2, v2, v′]. Then we have
dF(P,Q)< 2ε by the triangle inequality, which implies that P is weakly simple. �

Lemma 6.6 Let P be a spur-reduced polygon with more than two distinct vertices, and let P̃ be the result of a safe
segment expansion. P is weakly simple if and only if P̃ is weakly simple.

Proof: Let uv be the safe segment around which we are expanding, and let θ be the smallest positive angle
between uv and any other segment incident to u or v. By the previous lemma, we can assume without loss of
generality that P does not contain the subpath [u, v, u, v].

Suppose P̃ is weakly simple. Fix a real number ε� δ/2n, and let Q̃ be a simple polygon such that dV (P̃, Q̃)< ε,
as guaranteed by Theorem 2.1. If P has no spurs at uv, the proof of Lemma 5.1 implies that dF(P, Q̃)< δ(1+1/ sinθ )
and we are done. However, if P has a spur at uv, the Fréchet distance between P and Q̃ is approximately the
length of uv. In this case, we iteratively modify Q̃ into a new simple polygon Q such that dF(P,Q)< δ/ sinθ + ε <
δ(1+ 1/ sinθ ).

Suppose P has k distinct spurs at uv. For each integer i from 0 to k, let Di be the elliptical disk concentric
with Duv but whose axes are shorter by 2(i + 1)ε. For example, the major axis of D0 has length |uv|+ 2δ− 2ε and
the minor axis has length 2δ− 2ε. Every vertex of Q̃ lies outside each disk Di , and if ε is sufficiently small, every
edge of Q̃ that intersects D also intersects each disk Di .

We iteratively define a sequence of polygons Q̃ =Q0,Q1, . . . ,Qk as follows. Fix an index i ≥ 0. Let Ui and Vi
denote the subsets of ∂Di within distance δ/ sinθ of u and v, respectively. If δ is sufficiently small, the elliptical
arcs Ui and Vi are disjoint. Every segment in Q̃ i ∩ Di has endpoints in Ui ∪ Vi . We call a segment in Q̃ i ∩ Di a left
segment if both endpoints are in Ui , or a right segment if both endpoints are in Vi . Every left segment corresponds
to a subpath of P of the form [a, u, v, u, b], and every right segment corresponds to a subpath of P of the form
[y, v, u, v, z].

Suppose Q̃ i ∩ Di includes at least one left segment; right segments are handled symmetrically. Then some
component Ri of Di \ Q̃ i has both a left segment and an arc of Vi on its boundary. Suppose the left segment
corresponds to the subpath [a, u, v, u, b] of P. Then P̃ contains the subpath [a, [ua], [ub], b], where [ua] = ua∩∂Duv
and [ub] = ub ∩ ∂Duv , polygon Q̃ contains an edge a′b′ such that d(a′, [ua])< ε and d(b′, [ub])< ε, and finally
ai bi = a′b′ ∩ Di is the left segment in question. Fix a point zi ∈ R∩ Vi , and let Q̃ i+1 be the simple polygon obtained
by replacing the line segment ai bi with the path [ai , zi , bi].

Arguments in the proof of Lemma 5.1 imply that d(u, a′)< δ/ sinθ + ε and d(u, b′)< δ/ sinθ + ε, which in
turn imply that d(u, ai)< δ/ sinθ + ε and d(u, bi)< δ/ sinθ + ε. It now follows that

dF
�

[[ua], u, v, u, [ub]], [a′, ai , zi , ai , b′]
�

< δ/ sinθ + ε.

The final polygon Qk has no left or right segments in Dk; thus, every spur in P is within Fréchet distance
δ/ sinθ + ε of the corresponding path in Qk. We conclude that dF(P,Qk)< δ/ sinθ + ε, which implies that P is
weakly simple.

Finally, Lemma 4.3 implies that if P is weakly simple, then P̃ is weakly simple, completing the proof. �

7 Fast Implementation
Finally, we describe a more careful implementation of the previous algorithm that runs in O(n log n) time, again
assuming that the input polygon has no forks. At a high level, the algorithm is identical to the previous section.
We build the image graph G and perform the initial node expansions in O(n log n) time, and then repeatedly
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expand useful segments until either we discover a simple crossing or there are no more useful segments. The only
change is that we maintain a collection of simple data structures that allow us to perform each segment expansion
more quickly, as described in Sections 7.1 and 7.2. The final O(n log n) running time follows from a heavy-path
decomposition argument [27,46] in Section 7.3.

Theorem 7.1 Given an arbitrary n-vertex polygon P without forks but possibly with spurs, we can determine in
O(n log n) time whether P is weakly simple.

Corollary 7.2 Given an arbitrary n-vertex polygon P, we can determine in O(n2 log n) time whether P is weakly
simple.

7.1 Data Structures
Our improved algorithm uses the following data structures. We maintain the image graph G in a standard data
structure for planar straight-line graphs, such as a quad-edge data structure [26] or a doubly-connected edge
list [5]. The polygon P is represented by a circular doubly-linked list that alternates between vertex records and
edge records; each vertex in P points to the corresponding node in G.

Call an edge of P simple if neither of its endpoints is a spur and complex otherwise. For each segment uv,
we separately maintain a doubly-linked list Simple(uv) of all simple edges of P that coincide with uv, and a
doubly-linked list Complex(uv) of all complex edges of P that coincide with uv. Every record in these lists has
pointers both to and from the corresponding edge record in the circular list representing P. Each of these lists also
maintains its size.

Each node u in G also maintains its multiplicity n(u) and pointers to its base(s). Finally, we maintain a
global queue of all useful segments in G. All of these data structures can be constructed in O(n) time after the
preprocessing phase.

7.2 Fast Segment Expansion
To simplify notation, let D = Duv . Our segment expansion algorithm divides each segment expansion into four
phases: (1) remove all spurs at the endpoints u and v; (2) compute the nodes [ua] and [vz] in cyclic order around
the ellipse ∂D; (3) straighten the remaining paths through u and through v; (4) build the graph GD, check for
simple crossings, and update the image graph G. Our analysis uses the following functions of u (and similar
functions of v), all defined just before the segment expansion begins:

• deg(u) is the number of segments incident to u, including uv.

• n(u) is the number of vertices of P that coincide with u.

• σ(u) is the number of spurs of P that coincide with u.

Phase 1: Remove spurs. Because uv is a safe segment, all spurs at u and v occur in subpaths of the form [u, v, u]
or [v, u, v]. We remove all spurs at u and v by brute force, by traversing uv’s list of complex edges. Each time we
remove a spur σ, we check the edges of P immediately before and after σ, and if necessary, move them from
Simple(uv) to Complex(uv) or vice versa. We also update the multiplicities n(u) and n(v). After this phase, every
maximal subpath of P inside the disk Duv has length at most 3. The total time for this phase is O(σ(u) +σ(v) + 1).

Phase 2: Compute sequence of new nodes. Next, we compute the intersection points G∩∂D in cyclic order by
considering the segments incident to u in cyclic order, starting just after uv, and then the segments incident to v in
cyclic order, starting just after uv. These two cyclic orders are part of the rotation system of G, which is directly
accessible from the graph data structure. For each intersection point [ua] or [vz], we initialize a new node record
with a pointer to its base [ua]a or [vz]z. At this point, we can update the queue of useful segments.

Finally, we find a segment ua∗ with maximum multiplicity n([ua∗]) and a segment vz∗ with maximum
multiplicity n([vz∗]), such that a∗ 6= v and z∗ 6= u. To simplify notation, let u′ denote the point [ua∗] = ua∗ ∩ ∂D
and let v′ denote the point [vz∗] = vz∗ ∩ ∂D. The total time for this phase is O(deg(u) + deg(v)).

Phase 3: Expansion. The third phase straightens the remaining constant-length paths through u and v except
for subpaths that start with a∗ or end with z∗. Specifically, for each segment ua with a 6= a∗, we replace subpaths
of P containing segment ua with corresponding paths through the new node [ua] as follows:

• [a, u, v] becomes [a, [ua], v],

• [a, u, a] becomes [a, [ua], a],
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• [a, u, b] becomes [a, [ua], [ub], b] for any other node b.

Then for each segment vz with z 6= z∗, we similarly replace subpaths of P that contain vz with paths through the
new node [vz]. Each path replacement takes O(1) time, including the time to update the relevant simple- and
complex-edge lists.

At the end of these two loops, the only remaining subpaths through u and v have the forms [a∗, u, v, y] or
[a∗, u, b] or [b, u, v, z∗] or [y, v, z∗]. To update these subpaths, we intuitively move node u to u′ and move node v
to v′. In fact, “moving” these two nodes has no effect on our data structures at all; we only change their names for
purposes of analysis.

The total time for this phase is at most O(n(u)− n(u′) + n(v)− n(v′) + 1), where n(u′) and n(v′) denote the
number of vertices at u′ and v′ after the segment expansion.

Phase 4: Check planarity and update G. We discover all the segments in the graph GD in the previous phase.
If there are more than 2(deg(u) + deg(v)) such segments, then GD cannot be planar, so we immediately halt and
report that P is not weakly simple. Otherwise, we compute the rotation system of GD and check its planarity in
O(deg(u) + deg(v)) time, as described in Section 4.5. If GD is a plane graph, we splice it into the image graph G,
again in O(deg(u) + deg(v)) time.

7.3 Time Analysis via Heavy-Path Decomposition
The analysis in the previous section implies that the total time for a single edge expansion is at most

O(σ(u) +σ(v) + 1) +O(deg(u) + deg(v))
+O(n(u)− n(u′) + n(v)− n(v′) + 1).

We can charge the +1s in the first and third terms to the second term. Expanding any segment uv decreases the
number of vertices of P by at least σ(u) +σ(v). It follows that

∑

uv(σ(u) +σ(v)) = O(n), where the sum is taken
over all expanded segments uv.

For any segment uv, we have deg(u)≤ 2(n(u)− n(u′))+ 2 and deg(v)≤ 2(n(v)− n(v′))+ 2. Moreover, if uv is
a useful segment, we also have n(u) + n(v)> n(u′) + n(v′), which implies

deg(u) + deg(v)≤ 6(n(u)− n(u′) + n(v)− n(v′)).

Thus, to bound the overall running time of our algorithm, it remains only to bound the sum
∑

uv

(n(u)− n(u′) + n(v)− n(v′)).

For purposes of analysis, we define a family tree T of all nodes that our algorithm ever creates. The root of T
is a special node r, whose children are the nodes in the initial image graph (after node expansion). The children
in T of any other node u are the new nodes [ua] created during the segment expansion that destroys u, together
with u′. (Likewise, the children of v are the new nodes [vz] together with v′.) Each node u in T has weight n(u),
which is the number of vertices located at u just before the segment expansion that destroys u, or equivalently, just
after the segment expansion that creates u. To simplify analysis, we set n(r) to be the number of vertices in P
immediately after the initial node expansion. Let C(u) denote the children of node u in T . Recall that u′ denotes
some maximum-weight child of node u. Finally, let N denote the set of all nodes in T , and let N ′ = {u′ | u ∈ N}.

Expanding segment uv distributes the n(u) vertices at u as follows:

• All σ(u) spurs at u vanish.

• In any subpath of the form [a, u, v, . . . , u, a], where the intermediate vertices alternate between u and v, the
first and last occurrences of u merge into a single spur at the child [ua].

• Every other vertex at u moves to one of the children of u.

It follows that for any node u, we have

n(u) = σ(u) +
∑

x∈C(u)

(n(x) +σ(x)),
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which implies
n(u)− n(u′) =

∑

x∈C(u)\{u′}

n(x) +
∑

x∈C(u)∪{u}

σ(x)

and therefore
∑

u∈N

(n(u)− n(u′)) ≤
∑

x∈N\N ′
n(x) + 2

∑

x∈N

σ(x)

=
∑

x∈N\N ′
n(x) +O(n).

The following standard heavy-path decomposition argument [27,46] implies that
∑

x∈N\N ′ n(x) = O(n log n).
If we remove the vertices in N ′ from T by contracting each node in N ′ to its parent, the resulting tree has height
O(log n), and the total weight of the nodes at each level is O(n). We conclude that the total time spent expanding
segments is O(n log n), which completes the proof of Theorem 7.1.

8 Generalizations and Open Problems
Finally, we conclude by describing some extensions of our results and a few interesting open problems.

8.1 Polygonal Chains
A straightforward generalization of our algorithm can determine whether a given polygonal chain is weakly simple
in O(n2 log n) time, by checking a polygon that traverses the chain twice.

Lemma 8.1 Let P = [p0, p1, . . . , pn−1, pn] be an arbitrary polygonal chain. P is weakly simple if and only if the
polygon P̂ = (p0, p1, . . . , pn−1, pn, pn−1, . . . , p1) is weakly simple.

Proof: Suppose P is weakly simple. Then for any δ > 0, there is a simple curve Q with dF(P,Q)< δ. In fact, we
can assume Q is a simple polygonal chain, as Ribó Mor’s results [39] extend to polygonal chains. Fix a positive
real number ε � δ such that the intersection of Q with any closed disk of radius ε centered on a point of Q is
connected; it suffices for ε be less than the minimum local feature size of Q [40]. Let Q̂ denote the boundary of the
ε-neighborhood of Q. Then Q̂ is a simple closed curve where dF(P̂, Q̂)< δ+ 2ε, which implies that P̂ is weakly
simple.

On the other hand, suppose the polygon P̂ is a weakly simple. Then for any δ > 0 there is a simple polygon Q̂
such that dV (P̂, Q̂) < δ. Let Q be either subpath of Q̂ between the vertex corresponding to p0 to the vertex
corresponding to pn. Then Q is a simple polygonal chain with dV (P,Q) < δ, which implies that P is weakly
simple. �

8.2 Graph Drawings
There is a natural generalization of weak simplicity to arbitrary graph drawings. Any graph can be regarded as a
topological space, specifically, a branched 1-manifold. A planar drawing of a graph H is just a continuous map
from H to the plane; a drawing is simple or an embedding if it is injective. The Fréchet distance between two
planar drawings P and Q of the same graph H is naturally defined as

dF(P,Q) = inf
φ : H→H

max
x∈H

d(P(φ(x)),Q(x))

where the infimum is taken over all automorphisms of H (homeomorphisms from H to itself). We can define a
planar drawing P to be weakly simple (or a weak embedding) if, for any ε > 0, there is a planar embedding Q of
H with dF(P,Q)< ε. This definition is consistent with our existing definitions of weakly simple closed curves in
the plane. It is a natural open question whether one can decide in polynomial time whether a given straight-line
drawing of a planar graph is a weak embedding; Cortese et al. [17] observe that it is not sufficient to check whether
every cycle in the drawing is weakly simple.

However, a simple generalization of our algorithm actually solves this problem when the graph H being drawn
is a disjoint union of cycles. In fact, the algorithm is unchanged except for the termination condition; when the
main loop terminates, the image graph is the union of disjoint cycles and single segments, and P is weakly simple
if and only if each component of P either traverses some cycle component of the image graph exactly once or maps
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to an isolated segment. Moreover, using the doubling trick described above in Section 8.1, our algorithm can also
be applied to disjoint unions of cycles and paths. Details will appear in the full version of the paper.

Any algorithm to determine whether a graph drawing is a weak embedding must handle the special case where
the image of the drawing is a simple path. This special case is equivalent to the strip planarity problem recently
introduced by Angelini et al. [3] as a variant of clustered planarity [17,23] and level planarity [33]. The strip
planarity problem is open even when the graph H is a tree.

8.3 Surface Graphs
Our algorithm can also be generalized to surfaces of higher genus. A closed curve P in an arbitrary surface Σ is
weakly simple if for any ε > 0 there is a simple (injective) closed curve Q in the same surface, such that dF(P,Q)< ε,
where Fréchet distance is defined with respect to an arbitrary metric on Σ.

Theorem 8.2 Given a closed walk P of length n in an arbitrary surface-embedded graph, we can determine whether
P is weakly simple in O(n log n) time.

Our algorithms for detecting weakly simple polygons use the geometry of the plane only in the preprocessing
phase, where we apply a sweep-line algorithm to remove forks and to construct the image graph. Cortese et al.
already describe topological versions of our expansion operations, which use topological disks instead of ellipses, as
well as their proofs of correctness [17]. The only minor subtlety is the termination condition when the underlying
surface is non-orientable. For any integer k > 0, let γk be the cycle that wraps around some simple cycle γ exactly k
times. Then γk is weakly simple if and only if k = 1, or k = 2 and γ is orientation-reversing [14,38,50]. Again,
details will appear in the full version of the paper.

8.4 Uniqueness
Another interesting open problem, suggested by Günter Rote, concerns the uniqueness of the simplifying pertur-
bation. For any weakly simple polygon P without spurs, the perturbation required to make P simple appear to
be essentially unique, in the following sense. Fix a sufficiently small parameter ε > 0. If Q and Q′ are simple
polygons within Fréchet distance ε of P, then Q can be morphed into Q′ through a continuous sequence of simple
closed curves within Fréchet distance ε of P. However, weakly simple polygons with spurs can be simplified by
exponentially many essentially distinct perturbations; consider polygons of the form (u, v, u, v, . . . , u, v) for any
points u and v. How quickly can we determine whether a given polygon is uniquely weakly simple? Can we
efficiently count the number of essentially different simplifications?

8.5 Further Improvements

Finally, perhaps the most immediate open question is how to improve the O(n2 log n) running time of our algorithm
for arbitrary polygons with both spurs and forks. A direct generalization of bar expansion seems unlikely; Lemma
5.1 does not generalize to polygons with spurs. Nevertheless, we conjecture that the quadratic blowup from
subdividing edges at forks can be avoided, and that the running time can be improved to O(n log n).
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