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Abstract

Given a multiset S of n positive integers and a target integer t, the subset sum problem is to decide if there is
a subset of S that sums up to t. We present a new divide-and-conquer algorithm that computes all the realizable
subset sums up to an integer u in O(min{y/nw, u*,0}), where o is the sum of all elements in S and O hides
polylogarithmic factors. This result improves upon the standard dynamic programming algorithm that runs in
O(nu) time. To the best of our knowledge, the new algorithm is the fastest general deterministic algorithm for
this problem. We also present a modified algorithm for finite cyclic groups, which computes all the realizable
subset sums within the group in O(min{/nm, m>*}) time, where m is the order of the group.

1 Introduction

Given a multiset S of n positive integers and an integer target value t, the subset sum problem is to decide if
there is a subset of S that sums to t. The subset sum problem is related to the knapsack problem [11] and it is
one of Karp’s original NP-complete problems [25]. The subset sum is a fundamental problem used as a standard
example of a problem that can be solved in weakly polynomial time in many undergraduate algorithms/complexity
classes. As a weakly NP-complete problem, there is a standard pseudopolynomial time algorithm using a dynamic
programming, due to Bellman, that solves it in O(nt) time [2] (see also [9, Chapter 34.5]). The current state
of the art has since been improved by a logt factor using a bit-packing technique [32]. There is extensive
work on the subset sum problem, see Table 1 for a summary of previous deterministic pseudopolynomial time
results [2,15,27,29,31,32,33,37,38].

Moreover, there are results on subset sum that depend on properties of the input, as well as data structures
that maintain subset sums under standard operations. In particular, when the maximum value of any integer in S
is relatively small compared to the number of elements n, and the target value t lies close to one-half the total
sum of the elements, then one can solve the subset sum problem in almost linear time [16]. This was improved by
Chaimovich [7]. Furthermore, Eppstein described a data structure which efficiently maintains all subset sums
up to a given value u, under insertion and deletion of elements, in O(ulogulogn) time per update, which can
be accelerated to O(ulogu) when additional information about future updates is known [14]. The probabilistic
convolution tree, by Serang [37,38], is also able to solve the subset sum problem in O(nmax(S)) time, where O
hides polylogarithmic factors.

If randomization is allowed, more algorithms are possible. In particular, Bringmann showed a randomized
algorithm that solves the problem in O(nt) time, using only O(nlogt) space under the Extended Riemann
Hypothesis [4]. Bringmann also provided a randomized near linear time algorithm O(n + t) - it remains open
whether this algorithm can be derandomized.

Finally, it is unlikely that any subset sum algorithm runs in time O(t'~¢ n°), for any constant ¢ and € > 0,
as such an algorithm would imply that there are faster algorithms for a wide variety of problems including set
cover [4,10].

1.1 Applications of the subset sum problem.

The subset sum problem has a variety of applications including: power indices [42], scheduling [17, 19, 34],
set-based queries in databases [41], breaking precise query protocols [12] and various other graph problems with
cardinality constraints [5,6,13,14,18,27] (for a survey of further applications see [26]).

A faster pseudopolynomial time algorithm for the subset sum would imply faster polynomial time algorithms
for a number of problems. The bottleneck graph partition problem on weighted graphs is one such example. It asks
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Result Time Space Comments

Bellman [2] O(nt) o(t) original DP solution
.. nt ¢ RAM model implementation of Bell-
Pisinger [32] O(W) O(@) man
Pisinger [33] O(nmaxS) o(t) fast if small max S
Faaland = [15], o(n't) o(t) fast for small n’

Pferschy [31]

fast for small o, obtainable from above

Klinz et al. [27]  0O(c%/?) O(t) because n’ = O(\/E)

Eppstein  [14],

Serang [37,38] O(nmaxS) O(tlogt) data structure
E‘; g]s htanov et al. on°t) o(n®) polynomial space
current work O(min {vr¢,t*3,0}) o(t) see Section 1.2

Theorem 2.14

Table 1. Summary of deterministic pseudopolynomial time results on the subset sum problem. The input is a target number t
and a multiset S of n numbers, with n’ distinct values up to t, and o denotes the sum of all elements in S.

Parameters Previous best Current work

nand t O(nt/logt)  O(min{ynt, t*°})

n’ and t o(n't) O(min {vr’¢, t*°})
o 0(c?/?) 0(0o)

Table 2. Our contribution on the subset sum problem compared to the previous best known results. The input S is a multiset
of n numbers with n’ distinct values, o denotes the sum of all elements in S and ¢ is the target number.

to split the vertices of the graph into two equal-sized sets such that the value of the bottleneck (maximum-weight)
edge, over all edges across the cut, is minimized. The impact of our results on this problem and other selected
applications is highlighted in Section 5.

1.2 Our contributions.

The new results are summarized in Table 2 — we consider the following all subset sums problem: Given a multiset
S of n elements, with n’ distinct values, with o being the total sum of its elements, compute all the realizable
subset sums up to a prespecified integer u. Computing all subset sums for some u > t also answers the standard
subset sum problem with target value t.

Our main contribution is a new algorithm for computing the all subset sums problem in 5(min{ yau,u’?, 0'})
time. The new algorithm improves over all previous work (see Table 2). To the best of our knowledge, it is the
fastest general deterministic pseudopolynomial time algorithm for the all subset sum problem, and consequently,
for the subset sum problem.

Our second contribution is an algorithm that solves the all subset sums problem modulo m, in O(min{ Jam, m>*4} log2 m)
time. Though the time bound is superficially similar to the first algorithm, this algorithm uses a significantly
different approach.

Both algorithms can be augmented to return the solution; i.e., the subset summing up to each number, with a
polylogarithmic slowdown (see Section 4 for details).



1.3 Sketch of techniques.

The straightforward divide-and-conquer algorithm for solving the subset sum problem [23], partitions the set of
numbers into two sets, recursively computes their subset sums and combines them together using FFT [14,37,38]
(Fast Fourier Transform [9, Chapter 30]). This algorithm has a running time of O(c log o logn).

Sketch of the first algorithm (on integers). Our main new idea is to improve the “conquer” step by taking
advantage of the structure of the sets. In particular, if S and T lie in a short interval, then one can combine their
subset sums quickly, due to their special structure. On the other hand, if S and T lie in a long interval, but the
smallest number of the interval is large, then one can combine their subset sums quickly by ignoring most of the
sums that exceed the upper bound.

The new algorithm works by first partitioning the interval [0 : u] into a logarithmic number of exponentially
long intervals. Then computes these partial sums recursively and combines them together by aggressively deploying
the above observation.

Sketch of the second algorithm (modulo m). Assume m is a prime number. Using known results from number
theory, we show that for any ¢ one can partition the input set into O(|S|/¢) subsets, such that every such subset is
contained in an arithmetic progression of the form x, 2x,...,{x. The subset sums for such a set can be quickly
computed by dividing and later multiplying the numbers by £. Then combine all these subset sums to get the
result.

Sadly, m is not always prime. Fortunately, all the numbers that are relative prime to m can be handled in
the same way as above. For the remaining numbers we use a recursive partition classifying each number, in a
sieve-like process, according to which prime factors it shares with m. In the resulting subproblems all the numbers
are coprime to the moduli used, and as such the above algorithm can be used. Finally, the algorithm combines the
subset sums of the subproblems.

Paper organization. Section 2 covers the algorithm for positive integers. Section 3 describes the algorithm
for the case of modulo m. Section 4 shows how we can recover the subsets summing to each set, and Section 5
presents the impact of the results on selected applications of the problem.

2 The algorithm for integers

2.1 Notations.

Let[x:y]={x,x+1,...,y} denote the set of integers in the interval [x, y]. Similarly, [x] =[1 : x]. For two
sets X and Y, we denote by X @ Y the set {x + y | x € X and y € Y}. If X and Y are sets of points in the plane,
X @Y isthe set {(x; +y, x5 +¥5) | x1,x,€X and y;,y, €Y}

For an element s in a multiset S, its multiplicity in S is denoted by 1¢(s). We denote by set(S) the set of distinct
elements appearing in the multiset S. The size of a multiset S is the number of distinct elements in S (i.e., [set(S)]).
The cardinality of S, is card(S) = Y. s 15(s). We denote that a multiset S has all its elements in the interval
[x:yIbyS<clx:yl

For a multiset S of integers, let ©g = Y.
subset sums is denoted by

ses 15(s) - s denote the total sum of the elements of S. The set of all

D(S)={z,|TCs}.
The pair of the set of all subset sums using sets of size at most a along with their associated cardinality is denoted
by D.=¢[S] = {(ZT, |T|) | TCS,|T|< a}. The set of all subset sums of a set S up to a number u is denoted by
> (8)=D(S)N[0:ul.
2.2 From multisets to sets.

Here, we show that the case where the input is a multiset can be reduced to the case of a set. The reduction idea
is somewhat standard (see [26, Section 7.1.1]), and first appeared in [28]. We present it here for completeness.

Lemma 2.1 Given a multiset S of integers, and a number s € S, with 14(s) = 3. Consider the multiset S’ resulting
from removing two copies of s from S, and adding the number 2s to it. Then, D.<,(S) = D.<,(S’). Observe that
card(S’) = card(S) —1.

Proof: Consider any multiset T € S. If T contains two or more copies of s, then replace two copies by a single
copy of 2s. The resulting subset is T’ € §’, and % = X7/, establishing the claim. O



Lemma 2.2 Given a multiset S of integers in [u] of cardinality n with n’ unique values, one can compute, in
O(n’log®u) time, a multiset T, such that: (i) > (8)=D1.u(T),

(ii) card(T) < card(S),

(iii) card(T) = O(n’ logu), and

(iv) no element in T has multiplicity exceeding two.

Proof: Copy the elements of S into a working multiset X. Maintain the elements of set(X) in a heap D, and let T
initially be the empty set. In each iteration, extract the minimum element x from the heap D. If x > u, we stop.

If 14(x) < 2, then delete x from X, and add x, with its appropriate multiplicity, to the output multiset T, and
continue to the next iteration.

If 1,(x) > 2, then delete x from X, add x to the output set T (with multiplicity one), insert the number 2x
into X with multiplicity m’ = [(1y(x)—1)/2], (updating also the heap D — by adding 2x if it is not already in it),
and set 1, (x) « 1y(x)—2m’. The algorithm now continues to the next iteration.

At any point in time, we have that Y, (S) = D.<,(X U T), and every iteration takes O(logu) time, and and as
such overall, the running time is O(card(T)logu), as each iteration increases card(T) by at most two. Finally, notice
that every element in T is of the form 2ix, x € S for some i, where i < logn, and thus card(T) = O(n’logu). O

Note that the following lemma refers to sets.

Lemma 2.3 Given two sets S, T C [0 : u]], one can compute S & T in O(ulogu) time.

Proof: Let f5(x)=...c x' be the characteristic polynomial of S. Construct, in a similar fashion, the polynomial
fr and let g = fq * fr. Observe that the coefficient of x' in g is greater than O if and only if i € S® T. As such,
using FFT, one can compute the polynomial g in O(ulogu) time, and extract S @ T from it. |

Observation 2.3.1 If P and Q form a partition of multiset S, then ».(S) = 2.(P) @ D.(Q).

Combining all of the above together, we can now state the following lemma which simplifies the upcoming
analysis.

Lemma 2.4 Given an algorithm that computes ¥.,(S) in T(n,u) = Q(ulog?u) time, for any set S C [u] with n
elements, then one can compute Y..,,(S") for any multiset S" C [u], with n’ distinct elements, in O(T(n’ logu, u))
time.

Proof: First, from S, compute the multiset T as described in Lemma 2.2, in O(ulog®u) time. As every element in
T appears at most twice, partition it into two sets P and Q. Then >, (T) = (3<,(P) ® >.<,(Q)) N [0 : u], which
is computed using Lemma 2.3, in O(ulogu) time. This reduces all subset sums for multisets of n’ distinct elements
to two instances of all subset sums for sets of size O(n’logu). O

2.3 The input is a set of positive integers.

In the previous section it was shown that there is little loss in generality and running time if the input is restricted
to sets instead of multisets. For simplicity of exposition, we assume the input is a set from here on.

Here, we present the main algorithm: At a high level it uses a geometric partitioning on the input range [0 : u]]
to split the numbers into groups of exponentially long intervals. Each of these groups is then processed separately
abusing their interval range that bounds the cardinality of the sets from that group.

Observation 2.4.1 Let g be a positive, superadditive (i.e. g(x +y) = g(x)+ g(y), Vx,y) function. For a function
f (n, m) satisfying
foum= max {F(Z.m)+f(5.m,)+gm},

my+my=m 2

we have that f(n,m) = 0 (g(m)logn).

Theorem 2.5 Given a set of positive integers S with total sum o, one can compute the set of all subset sums Y.(S) in
O(o logologn) time.

Proof: Partition S into two sets L,R of (roughly) equal cardinality, and compute recursively L' = D)(L) and
R’ =J(R). Next, compute ».(S) = L’ ® R’ using Lemma 2.3. The recurrence for the running time is f(n, o) =
max, iq,-o1f(n/2,01)+f(n/2,0,)+0(c log o)}, and the solution to this recurrence, by 2.4.1,is O(c log o logn). O



Remark The standard divide-and-conquer algorithm of Theorem 2.5 was already known in [14, 38], here we
showed a better analysis. Note, that the basic divide-and-conquer algorithm without the FFT addition was known
much earlier [23].

Lemma 2.6 ( [14,38]) Given a set S C [A] of size n, one can compute the set 3.(S) in O(nAlog(nA)log n) time.
Proof: Observe that £g < An and apply Theorem 2.5. O
Lemma 2.7 Given two sets of points S, T € [0 : u] x [0 : v], one can compute S & T in O(uv log(uv)) time.

Proof: Let fs(x,y) = Z(i,j)es x'yJ be the characteristic polynomial of S. Construct, similarly, the polynomial fr,

and let g = f % fr. Note that the coefficient of x'y/ is greater than 0 if and only if (i, j) € S @ T. One can compute
the polynomial g by a straightforward reduction to regular FFT (see multidimensional FFT [3, Chapter 12.8]), in
O(uvloguv) time, and extract S @ T from it. O

Lemma 2.8 Given two disjoint sets B,C C [x : x +£] and >.=*[B], =*[C], one can compute ».=*[BUC] in
0 (¢a*log(fa)) time.

Proof: Consider the function f((i,j)) = (i —xj,j). Let X = f(X=¢[B]) and Y = f (};=*[C]). If (i,j) €
Y=*[BJud:=*[C], theni=jx+y for y € [0:£j]. Hence X,Y C[0:£a] x [0: a].

Computing X @ Y using the algorithm of Lemma 2.7 can be done in O (Eaz log(fa)) time. Let Z = (X &
Y)N([0:£a] x [0: a]). The set >,<*[B U C] is then precisely f!(Z). Projecting Z back takes an additional
0 (ta?log(ta)) time. O

Lemma 2.9 Given a set S C [x : x + (] of size n, computing the set »,~*[S] takes O(EOL2 log(£a)log n) time.

Proof: Compute the median of S, denoted by &, in linear time. Next, partition S into two sets L =S N[§] and
R=SN[6+1:x+£]. Compute recursively L' = :=*[L] and R’ = >.=*[R], and combine them into »,**[L UR]
using Lemma 2.8. The recurrence for the running time is:

F(n,0) ngﬁﬁ’ig{f(g’gl) +f(g,€2) +0(ta? 1og(za))} ,

which takes O(¢a?log(¢a)logn) time, by 2.4.1. O

Lemma 2.10 Given a set S C [x : x +£] of size n, computing the set Y., (S) takes O ((u/x)zf log({u/x)log n)
time.

Proof: Apply Lemma 2.9 by setting a = |u/x] to get >,=%[S]. Projecting down by ignoring the last coordinate
and then intersecting with [0 : u] gives the set .., (S). O

Lemma 2.11 Given a set S C [u] of size n and a parameter ry, > 1, partition S as follows:
e So=SN[ryl, and
o fori>0,S;=SN[ri_y+1:r;], wherer; = [2irOJ.
The resulting partition is composed of v = O(logu) sets Sy, S4,...,S, and can be computed in O(nlogn) time.

Proof: Sort the numbers in S, and throw them into the sets, in the obvious fashion. As for the number of sets,
observe that 2'ry > u when i > logu. As such, after logn sets, r,, > u. |

Lemma 2.12 Given a set S C [u] of size n. Fori =0,...,v = 0(logu), let S; be the ith set in the above partition
and let |S;| = n;. One can compute 3, (S;), for all i, in overall O ((u?/rq + min{ry, n}r,)log?u) time.

Proof: BecauseS C [u],n=0(u). Ifi =0, then S, C [r,], and one can compute Y., (Sy), in O(nyry log(nyry) logny)
time, using Lemma 2.6. Since ny < ry and ny < n, this simplifies to O (min{n, ro}7o log? u).

For i > 0, the sets S; contain numbers at least as large as r;_;. Moreover, each set S; is contained in an interval of
length ¢; = r;—r;_; = r;_;. Now, using Lemma 2.10, one can compute >, (S;) in O((u/r;_1)*¢;log(¢;u/r;_y)logn;) =

2 2
O(r“f1 log? u) time. Summing this bound, fori =1,..., v, results in O (l;—o log? u) running time. O



Theorem 2.13 Let S C [u] be aset of n elements. Computing the set of all subset sums Y.<, (S) takes O (min{ Vv, u*?} log? u)
time.

Proof: Assuming the partition of Lemma 2.11, compute the subset sums T; = ZSU(Si), fori =0,...,v. Let
P, =T, and let P; = (P,_; ® T;) N [u]. Each P; can be computed using the algorithm of Lemma 2.3. Do this for
i=1,...,7, and observe that the running time to compute P,, given all T}, is O(v(ulogu)) = O(ulog®u).

Finally, for alli =1,..., v calculating the T;’s:

e By setting r, equal to u** and using Lemma 2.12 takes O (u*®log*u).

e By setting r, equal to <= and using Lemma 2.12 takes O (ﬁu log? u).

n
Taking the minimum of these two, proves the theorem. O

Putting together Theorem 2.5, Theorem 2.13 and Lemma 2.4, results in the following when the input is a
multiset.

Theorem 2.14 (Main theorem) Let S C [u] be a multiset of n’ distinct elements, with total sum o, computing the
set of all subset sums Y., (S) takes

O(min { «/ﬁulog% u, ui log?u, o log o log (n’ logu)})

time.

3 Subset sums for finite cyclic groups

In this section, we demonstrate the robustness of the idea underlying the algorithm of Section 2 by showing how
to extend it to work for finite cyclic groups. The challenge is that the previous algorithm throws away many sums
that fall outside of [u] during its execution, but this can no longer be done for finite cyclic groups, since these
sums stay in the group and as such must be accounted for.

3.1 Notations.

For any positive integer m, the set of integers modulo m with the operation of addition forms a finite cyclic group,
the group Z,, = {0, 1,...,m—1} of order m. Every finite cyclic group of order m is isomorphic to the group Z,, (as
such it is sufficient for our purposes to work with Z,,). Let U(Z,,) = {x € Z,, | gcd(x, m) = 1} be the set of units
of Z,,, and let Euler’s totient function p(m) = |U(Z,,)| be the number of units of Z,,. We remind the reader that
two integers a and 3 such that ged(a, ) = 1 are coprime (or relatively prime). The set

x[[2] ={x,2x,...,€x}

is a finite arithmetic progression, henceforth referred to as a segment of length |x[£]| = £. Finally, let S/x =
{s/x|s €S and x | s} and S%x = {s € S| x {s}, where x | s and x {s denote that “s divides q” and “s does not
divide q”, respectively. For an integer x, let o(x) denote the number of divisors of x and o,(x) the sum of its
divisors.

3.2 Subset sums and segments.

Lemma 3.1 For a set S C Z,, of size n, such that S C x[£], the set Y.(S) can be computed in O (n{log(n{)logn)
time.

Proof: All elements of x[{] are multiplicities of x, and thus S’ := S/x C [£] is a well defined set of integers.
Next, compute »,(S”) in O(nf log(nf)logn) time using the algorithm of Lemma 2.6 (over the integers). Finally,
compute the set {ox (mod m)|o € Z(S’)} =>1(S) in linear time. O

Lemma 3.2 Let S C Z,, be a set of size n covered by segments x,[£],...,x[£], formally S C Ule x;[€], then the
set 2.(S) can be computed in O(kmlogm + nf log(n{)logn) time.

Proof: Partition, in O(kn) time, the elements of S into k sets Sy,...,S;, such that S; € x;[¢], for i € [k].
Next, compute the subset sums T; = ».(S;) using the algorithm of Lemma 3.1, for i € [k]. Then, compute
T,0T,®...0 T, = 2.(S), by k—1 applications of Lemma 2.3. The resulting running time is O((k —1)mlogm +

> 1S;1€1og(]S;1¢) log |Si|) = O(kmlogm + nflog(nf)logn). O



3.3 Covering a subset of U(Z,,) by segments.

Somewhat surprisingly, one can always find a short but “heavy” segment.

Lemma 3.3 Let S € U = U(Z,,), there exists a constant c, for any £ such that c2min < € < m there exists an element
x € U such that |x[£]NS| = Q(% |S|).

Proof: Fixa 3 € U. Fori € UN[£] consider the modular equation ix = 8 (mod m), this equation has a unique
solution x € U - here we are using the property that i and 8 are coprime to m. Let a = |U|/2m. Let w(m) be the
number of distinct prime factors of m, and (m) = 2°0™ be the number of distinct square-free divisors of m. Then
O(m) < c2mhn < al [35]. There are at least 2al — 6(m) = al elements in U N [£] [40, Equation (1.4)].

Hence, when 8 € U is fixed, the number of values of x such that € x[£] is at least al. Namely, every element
of S C U is covered by at least afl segments {x[£] | x € U}. As such, for a random x € U the expected number of
elements of S that are contained in x[£] is (|S|af) /|U| = % |S|. Therefore, there must be a choice of x such that
|x[£] N S| is larger than the average, implying the claim. m|

One can always find a small number of segments of length £ that contain all the elements of U(Z,,).

Lemma 3.4 Let S C U(Z,,) of size n, then for any £ such that { > m'/? there is a collection £ of O(7 Inn) segments,
each of length £, such that S C | J ., x[£]. Furthermore, such a cover can be computed in O((n +logm)¢) time.

Proof: Consider the set system defined by the ground set Z,, and the sets {x[{] | x € U(Z,,)}. Next, consider the
standard greedy set cover algorithm [24,30,39]: Pick a segment x[£] such that |[x[£] N S| is maximized, remove
all elements of S covered by x[£], add x[£] to the cover, and repeat. By Lemma 3.3, there is a choice of x such
that the segment x[£] contains at least a c{/m fraction of S, for some constant c. After m/c/{ iterations of this
process, there will be at most (1 —cf/ m)m/ “n < n/e elements remaining. As such, after O(7 Inn) iterations the
original set S is covered.

To implement this efficiently, in the preprocessing stage compute the modular inverses of every element in
[£] using the extended Euclidean algorithm, in O(£ logm) time [9, Section 31.2]. Then, for every b € S and
every i € [£], find the unique x (if it exists) such that ix = b (mod m), using the inverse i ! in O(1) time. This
indicates that b is in x[£] N'S. Now, the algorithm computes x[£] NS, for all x, in time O(nf + £ logm). Next,
feed the sets x[£] NS, for all x, to a linear time greedy set cover algorithm and return the desired segments in
O(nf) time [9, Section 35.3]. The total running time is O((n +log m)Z). |

3.4 Subset sums when all numbers are coprime to m.

Lemma 3.5 LetS C U(Z,,) be aset of size n. Computing the set of all subset sums .(S) takes O (min { Jv/nm, m5/4} log mlog n)
time.

Proof: If |S| > 24/m, then »,(S) = Z,, [20, Theorem 1.1]. As such, the case where n = |S| > 2,/m is immediate.

For the case that n < 24/m we do the following. Apply the algorithm of Lemma 3.4 for £ = m/+/n > m'/2. This
results in a cover of S by O(7 logn) segments (each of length £), which takes O((n + log m)E) = 0(y/nmlogm)
time. Next, apply the algorithm of Lemma 3.2 to compute »,(S) in O(nf log(nf)logn) = O(y/nmlogmlogn) time.
Since, n = O(4/m) this running time is O(min {ﬁm, m%/41logmlog n). O

3.5 The algorithm: Input is a subset of Z,,,.
In this section, we show how to tackle the general case when S is a subset of Z,,.

3.5.1 Algorithm.

The input instance is a triple (T, u, T), where T is a set, u its modulus and 7T an auxiliary parameter. For such an
instance (T, u, 7) the algorithm computes the set of all subset sums of I' modulo . The initial instance is (S, m, m).
Let q be the smallest prime factor of 7, referred to as pivot. Partition I' into the two sets:

U/g={s/a|s T andq|s} and 1%q = {s T |qs}

Recursively compute the (partial) subset sums Y.(I'/q) and Y.(I'%q), of the instances (T'/q, u/q, T/q) and (T%q, u, T /q),
respectively. Then compute the set of all subset sums ».(T') = {qx { x €T/ q)} ® >.(T'%q) by combining them
together using Lemma 2.3. At the bottom of the recursion, when 7 = 1, for each set compute its subset sums,
using the algorithm of Lemma 3.5.



3.5.2 Handling multiplicities.

During the execution of the algorithm there is a natural tree formed by the recursion. Consider an instance (T, u, T)
such that the pivot q divides 7 (and w) with multiplicity r. The top level recursion would generate instances with
sets I'/q and I'%gq. In the next level, I'/q is partitioned into I'/q? and (I'/q)%q. On the other side of the recursion
I'%q gets partitioned (naively) into (I'%gq)/q (which is an empty set) and (I'%q)%q = I'%q. As such, this is a
superfluous step and can be skipped. Hence, compressing the r levels of the recursion for this instance results in
r + 1 instances:

T%q, (T/q)%q, ..., (T/q" )%q, T/q" .

The total size of these sets is equal to the size of I'. In particular, compress this subtree into a single level of
recursion with the original call having r + 1 children. At each such level of the tree label the edges by 0,1,2,...,r,
based on the multiplicity of the divisor of the resulting (node) instance (i.e., an edge between instance sets I' and
(T'/q?)%q would be labeled by “2”).

3.5.3 Analysis.

The recursion tree formed by the execution of the algorithm has a level for each of the k = O(logm/loglogm)
distinct prime factors of m [35] — assume the root level is the Oth level.

Lemma 3.6 Consider running the algorithm on input (S, m, m). Then the values of the moduli at the leaves of the
recursion tree are unique, and are precisely the divisors of m.

Proof: Let m = 1—[?:1 ql.rf be the prime factorization of m, where q; < g;,; for all 1 <i < k. Then every vector
x = (xq,...,x;), with 0 < x; < r;, defines a path from the root to a leaf of modulus m/ l—[f;l qf" in the natural
way: Starting at the root, at each level of the tree follow the edge labeled x;. If for two vectors x and y there is an
i € [k] such that x; # y;, then the two paths they define will be different (starting at the ith level). And, by the
unique factorization of integers, the values of the moduli at the two leaves will also be different. Finally, note that
every divisor of m, ]_[1;1 qf " with 0 < p; < ry, occurs as a modulus of a leaf, and can be reached by following the
path (r; — py,..., . — pi) down the tree. m|

Theorem 3.7 LetS C Z,, be a set of size n. Computing the set of all subset sums ».(S) takes O(min {ﬁm, m5/4} log” m)
time.

Proof: The algorithm is described in Section 3.5.1, when the input is (S, m, m). We break down the running time
analysis into two parts: The running time at the leaves, and the running time at internal nodes.

Let 6 be the number of leaves of the recursion tree. Arrange them so the modulus of the ith leaf, u;, is the ith
largest divisor of m. Note that u; is at most m/i, for all i € [6]. Using Lemma 3.5, the running time is bounded by

5 5 5/4
O(Zmin{\/n—iui,uf/4} logn; logui) = O(logmloganin{\/n—i?, (?) }) .
i=1 i=1

Using Cauchy-Schwartz, the first sum of the min is bounded by

3

S

i=1

and the second by O(m>/#). Putting it all together, the total work done at the leaves is O (min{ y/nm, m>4}logmlogn).

Next, consider an internal node of modulus u, pivot q¢ and r + 1 children. The algorithm combines these
instances, by applying r times Lemma 2.3. The total running time necessary for this process is described next. As
the moduli of the instances decrease geometrically, pair up the two smallest instances, combine them together, and
in turn combine the result with the next (third) smallest instance, and so on. This yields a running time of

<l
O(ZE loga) =O0(ulogu).

At the leaf level, by Lemma 3.6, the sum of the moduli Zil u; equals to o;(m), and it is known that o,(m) =
O(mloglogm)[21, Theorem 323]. As such, the sum of the moduli of all internal nodes is bounded by O(kmloglogm) =



O(mlogm), as the sum of each level is bounded by the sum at the leaf level, and there are k levels. As each
internal node, with modulus u, takes O(ulogu) time and x log x is a convex function, the total running time spent
on all internal nodes is O(mlog mlog(mlog m)) = 0(mlog®m).

Aggregating everything together, the complete running time of the algorithm is bounded by O(min {ﬁm, m5/ 4} log? m),
implying the theorem. O

The results of this section, along with the analysis of the recursion tree above, conclude the following corollary
on covering Z,, with a small number of segments. The result is useful for error correction codes, and improves the
recent bound of Chen et al. by a factor of v [8].

Corollary 3.8 There exist a constant c, for all £ such that c2mn < < m, one can cover Z,, with O ((c,(m)Inm)/£)+
o(m) segments of length £. Furthermore, such a cover can be computed in O(m{) time.

Proof: Let S,,,; = {x/(m/d)|x € Z,, and ged(x,m) = m/d}, for all d | m. Note that S,, ; = U(Z,), hence by
Lemma 3.4, each S,, 4 has a cover of O((dInd)/{) segments. Next, “lift” the segments of each set S, ;4 back up to
Z,, (by multiplying by m/d) forming a cover of Z,,. The number of segments in the final cover is bounded by

S0 (—lnm) 21_ (Gl(m)lnm)+oo(m).
€>d

dlm
<d

The time to cover each S, /4, by Lemma 3.4, is O((n+log m)E) O((t,o(d) +logd) f), since there are ¢(d) elements
inS,,4, and S,,,4 € Zgq. Also, (d) dominates logd, as O(cp(d)) Q(d/loglogd) [21, Theorem 328], therefore
the running time simplifies to O(cp(d)ﬁ ) Summing over all S,,,; we have

. 0(e@)e) = @2ﬁwﬂ=omm,

d|m dlm

since Zdlm p(d)=m[21, Sec 16.2], implying the corollary. |

Ife < chnlnlﬁ, then £ = m°®W. The corollary above then shows that for all £, there is a cover of Z,, with mi*te /¢
segments.

4 Recovering the solution

Given sets X and Y, a number x is a witness fori€e X @Y, if xeX andi—x €Y. Afunctionw:X®Y —» X isa
witness function, if w(i) is a witness of i.

If one can find a witness function for each X @ Y computation of the algorithm, then we can traceback the
recursion tree and reconstruct the subset that sums up to t in O(n) time. The problem of finding a witness function
quickly can be reduced to the reconstruction problem defined next.

4.1 Reduction to the reconstruction problem.

In the reconstruction problem, there are hidden sets Sy, ...,S, € [m] and we have two oracles SiZE and SuM that
take as input a query set Q.

e S1ZE(Q) returns the size of each intersection:
(Isinal1s;nQl,...,Is,nal)

e SUM(Q) returns the sum of elements in each intersection:

(2o 3o 3]

SESINQ  s€ESLNQ SE€S,NQ



The reconstruction problem asks to find n values x, ..., x, such that for all i, if S; is non-empty, x; € S;. Let f be
the running time of calling the oracles, and assume f = Q(m + n), then is it known that one can find x;,...,x, in
O(f lognpolylogm) time [1].

If X,Y C [u], finding the witness of X @ Y is just a reconstruction problem. Here the hidden sets are
Wy, ..., Wy, € [2u], where W; = {x |x+y =iand x € X,y € Y} is the set of witnesses of i. Next, define the
polynomials y,(x) = ZiEQ x! and Io(x) = ZiEQ ix!. The coefficient for x’ in XoXy is [W; N Q| and in I yy is
ZseWi nq S» which are precisely the ith coordinate of S1ze(Q) and Sum(Q), respectively. Hence, the oracles can

be implemented using polynomial multiplication, in O(u) time per call. This yields an O(u) time deterministic
algorithm to compute X @ Y with its witness function.

Hence, with a polylogarithmic slowdown, we can find a witness function every time we perform a @ operation,
thus, effectively, maintaining which subsets sum up to which sum.

5 Applications and extensions

Since every algorithm that uses subset sum as a subroutine can benefit from the new algorithm, we only highlight
certain selected applications and some interesting extensions. Most of these applications are derived directly from
the divide-and-conquer approach.

5.1 Bottleneck graph partition.

Let G = (V,E) be a graph with n vertices m edges and let w : E — R" be a weight function on the edges. The
bottleneck graph partition problem is to split the vertices into two equal-sized sets such that the value of the
bottleneck (maximum-weight) edge, over all edges across the cut, is minimized. This is the simplest example of a
graph partition problem with cardinality constraints. The standard divide-and-conquer algorithm reduces this
problem to solving O(logn) subset sum problems: Pick a weight, delete all edges with smaller weight and decide
if there exists an arrangement of components that satisfy the size requirement [22]. The integers being summed
are the various sizes of the components, the target value is n/2, and the sum of all inputs is n. Previously, using
the O(0®/?) algorithm by Klinz and Woeginger, the best known running time was O(m + n®/?logn) [27]. Using
Theorem 2.5, this is improved to O(m) + O(n) time.

5.2 All subset sums with cardinality information.

Let S = {s1,55,...,5,}. Define ZiZ(S) to be the set of pairs (i, j), such that (i, j) € ZiZ(S) ifandonlyifi <u,j<n
and there exists a subset of size j in S that sums up to i. We are interested in computing the set ZEZ(S ).

We are only aware of a folklore dynamic programming algorithm for this problem that runs in_O(nzu) time.
We include it here for completion. Let D[i, j, k] be true if and only if there exists a subset of size j that sums to i
using the first k elements. The recursive relation is

true ifi=j=k=0
D[i,j,k]= A false ifi>j=k=0
D[i,j,k—1]VvD[i—s;,j—1,k—1] otherwise

where we want to compute D[i, j,n] for all i <u and j < n. In the following we show how to do (significantly)
better.

Theorem 5.1 Let S C [u] be a set of size n, then one can compute the set ZiZ(S) in O(nu log(nu)log n) time.

Proof: Partition S into two (roughly) equally sized sets S; and S,. Find 22/ %(s,) and ZEZ/ %(S,) recursively, and
combine them using Lemma 2.7, in O(nu log(nu)) time. The final running time is then given by 2.4.1. m|

5.3 Counting and power index.

Here we show that the standard divide-and-conquer algorithm can also answer the counting version of all subset
sums. Namely, computing the function N, s(x): the number of subsets of S that sum up to x, where x < u.
For two functions f,g:X — Y, define f ®g : X — Y to be

(Fog)x)=> flx)glx—1)
tex
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Corollary 5.2 Given two functions f, g : [0 : u] = N such that f(x), g(x) < b for all x, one can compute f © g in
O(ulogulogb) time.

Proof: This is an immediate extension of Lemma 2.7 using the fact that multiplication of two degree u polynomials,
with coefficient size at most b, takes O(ulogulog b) time [36]. O

Theorem 5.3 Let S be a set of n positive integers. One can compute the function N, s in O(nulogulogn) time.

Proof: Partition S into two (roughly) equally sized sets S; and S,. Compute N, 5 and N, s, recursively, and
combine them into N, g = N, 5 ® N, 5 using Corollary 5.2, in O(ulogulog2") = O(nulogu) time. The final
running time is then given by 2.4.1. O

5.3.1 Power indices.

The Banzhaf index of a set S of n voters with cutoff u can be recovered from N, 5 in linear time. The Theorem 5.3
yields an algorithm for computing the Banzhaf index in O(nu) time. Previous dynamic programming algorithms
take O(nu) arithmetic operations, which translates to O(n?u) running time [42]. Similar speed-ups (of, roughly, a
factor n) can be obtained for the Shapley-Shubik index.
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