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Abstract

In this paper, we study the minimum k-partition problem of submodular functions, i.e., given a
finite set V and a submodular function f : 2V → R, computing a k-partition {V1, . . . , Vk} of V with
minimum
∑k

i=1 f (Vi). The problem is a natural generalization of the minimum k-cut problem in
graphs and hypergraphs. It is known that the problem is NP-hard for general k, and solvable in
polynomial time for fixed k ≤ 3. In this paper, we construct the first polynomial-time algorithm for
the minimum 4-partition problem.

1 Introduction

Let V be a finite set with n = |V |, and let f : 2V → R be a submodular function, i.e., f (X ) + f (Y ) ≥
f (X ∩ Y ) + f (X ∪ Y ) holds for any X , Y ⊆ V . For an integer k ≥ 2, the minimum k-partition problem
for a submodular function f is to compute a k-partition Pk = {V1, . . . , Vk} of V with the minimum value
defined as
∑k

i=1 f (Vi), where, for a positive integer k, {V1, . . . , Vk} is called a k-partition if Vi ̸= ; for all

i,
⋃k

i=1 Vi = V , and Vi ∩ Vj = ; for all i and j with i ̸= j. This is one of the most fundamental problems
in combinatorial optimization, and a natural generalization of the minimum k-cut problem in graphs
and hypergraphs, where both problems are polynomial time solvable for fixed k.

The minimum k-cut problem has many applications such as the traveling salesperson problem, VLSI
design, evolutionary tree construction and network reliability [12,22]. Goldschmidt-Hochbaum [13]
showed that the minimum k-cut problem in graphs is NP-hard, when k is a part of input, but it can be
solved in polynomial time for fixed k.

After their work, a number of algorithms for the minimum k-cut problem in graphs were proposed;
See [8,16,17,22,23,24,28,30], for example. The current best deterministic algorithm has Õ(mnk−1)
time for k ≤ 6 [21, 23, 24, 32], Õ(mn2k−2) time for k ≥ 7 [8], kO(k)n(2ω/3+ε)k+O(1) for any ε > 0 and
polynomially bounded weights, where ω is the matrix multiplication constant [16], and a randomized
algorithm in Õ(nk) time [15].

The minimum k-cut problem in hypergraphs is NP-hard, which immediately follows from the NP-
hardness of the graph problem [13]. Klimmek and Wagner [18] and Mak and Wong [20] showed that
the minimum 2-cut problem in hypergraphs can be solved in Õ(dn) time, where d denotes the sum of
the cardinalities of all hyperedges. Chekuri and Xu showed that in the same running time, they can
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count and enumerate all minimum 2-cuts [9]. For k = 3, Xiao [31] constructed an Õ(d(m+ n)n3)-time
algorithm. Fukunaga [11] showed that the problem can be solved in polynomial time if both k and
maxe∈E |e| are fixed. A randomized polynomial time algorithm was found by Chandrasekaran et. al. [6].
Later works speed up the randomized algorithm [10], and generalize to multicriteria objective and size
constraints [3]. Recently, Chandrasekaran and Chekuri finally settled the open problem and showed
minimum k-cut problem in hypergraphs is polynomial time solvable for each fixed k [5]. There is some
follow-up work on counting and enumerating all minimum k-cuts [1,2].

The minimum k-partition problem for fixed k is much less understood. A submodular function is
symmetric, if f (X ) = f (V \ X ). For k = 2, the problem is equivalent to the symmetric submodular
function minimization, since f (X ) can be replaced with 1

2( f (X ) + f (V − X )). Hence it can be solved in
O(n3γ) time by Queyranne’s algorithm [27], where γ denotes the time required for function evaluation.
For k = 3, Okumoto et al. [26] presented an O(n3τ(n))-time algorithm by extending Xiao’s algorithm
for the minimum 3-cut problem for hypergraphs [31], where τ(n) denotes the time required to solve
the submodular function minimization, and the current best known bound for τ(n) is Õ(n3γ+ n4) [19].
However, it is still open if there exists a polynomial time algorithm for fixed k ≥ 4 [26]. It was implied
in [4] that symmetric submodular k-partition reduces to n2k−2 calls of submodular (k − 1)-partition.
There are several studies on approximation algorithms for the problem [7,26,33,34]. The current best
approximation ratio is 1.5 for k = 4 [26] and 2 for k ≥ 5 [7].

A generalization of our problem, the w-size k-partition problem, first described in [14]. Let w =
(w1, . . . , w j), a w-size k-partition is a k-partition V1, . . . , Vk, such that wi ≤ |Vi| for each i ≤ j, and
|Vi| ≤ |Vi+1|. Namely, the ith smallest part of the partition has at least wi elements. The goal is to find a
minimum w-size k-partition. Since this is a strictly more general problem than submodular k-partition
problem, even fewer results are known.

Our results We show the following two results.

1. An O(n6τ(n)) time algorithm for finding a minimum 4-partition of a submodular function.

2. As a corollary, an O(n14τ(n)) time algorithm for finding minimum 5-partition of a symmetric
submodular function.

3. The minimum (1,ℓ)-size 3-partition can be found in O(n4ℓ−3τ(n)) time.

This settles the complexity status of the submodular k-partition problem for k = 4 [11,22,23,26,
31,34]. Our algorithm is based on the compatibility of 3- and 4-partitions, which is a generalization of
the noncrossing property of 2- and 3-partitions proposed in [14,26,31]. There exist two natural and
possible extensions of their noncrossing property. However, both extensions fail to produce a polynomial
time solution to the minimum 4-partition problem (see the detailed discussion in Section 3).

The rest of the paper is organized as follows. In Section 3, we present the compatibility of 3- and
4-partitions, where the proof can be found in Section 4, and describe our algorithm. In Section 5, we
present how to compute a minimum (1,ℓ)-size 3-partition for fixed ℓ. Section 6 analyzes the time
complexity of our algorithm. Finally in Section 7, we conclude with some remarks.

2 Preliminaries

We write
�V

i

�

to be the family of all size i subsets of V . We abuse the notation to generalize each function
f on sets to a function on partitions. That is, for any partition P, we define f (P) =

∑

X∈P f (X ). Let
g : 2V → R be a set function. For a set U ⊆ V , let g\U denote a set function obtained from g by deleting U
from V , and g/U denote a set function obtained from g by shrinking U into a new element u (i.e., u ̸∈ V ).
Namely, g\U : 2V\U → R satisfies g\U(S) = g(S), and g/U : 2(V\U)∪{u} → R satisfies g/U(S) = g(S) if
S ̸∋ u, and g((S \{u})∪U), otherwise. We note that g\U and g/U are both submodular if g is submodular.
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A set X is noncrossing with a partition Y, if X ⊆ Y for some Y ∈ Y. A partition X is noncrossing with a
partition Y, if there exists a component X ∈ X that is noncrossing with Y. A partition is called h-size for
an integer h if it is (h)-size, namely all its components contain at least h elements. A partition X is called
trivial if all but one component have exactly 1 element. A non-trivial k-partition is equivalent to s-size
partition, where s = (1, . . . , 1, 2) is a k− 1 size tuple. For 2-partitions over a ground set with at least 4
elements, it is trivial if and only if it is not 2-size.

For two partitions X= {X1, . . . , Xk} and Y= {Y1, . . . , Ym}, a matrix M is a configuration of X and Y,
if Mi, j = |X i ∩ Yj|. We will abuse the notation and write Mi j when it will not lead to confusion. We say
configuration M is generated by X and Y.

Two configurations M1 and M2 are equivalent if there exist a row permutation and a column
permutation to swap M1 into M2. Configurations help us visualize the ways partitions intersect.

To represent a set of possible configurations M visually, we write a few numbers in the matrix to
indicate what pattern the configuration matches. We use the number i to denote the values that are
known to be i, i+ if the value known to be at least i, i− if the value known to be at most i, and ? means
either we don’t know or we don’t care about its value.

3 Compatibility for 3- and 4-partitions
In this section, we present the compatibility of minimum 3- and 4-partitions in submodular functions,
from which we derive a polynomial time algorithm for the minimum 4-partition problem. We start with
the noncrossing property for 2- and 3-partitions, which was proven in [26].

The following lemma is a direct consequence of Corollary 1 from [26].

Lemma 3.1 Let f : 2V → R be a submodular function with n≥ 7, and let X denote a minimum non-trivial
2-partition of f . If f has a minimum 3-partition of 2-size, then it contains a minimum 3-partition with
which X is noncrossing.

By this lemma, we can easily construct the following divide-and-conquer algorithm for the minimum
3-partition problem [26], see Figure 3.1.

MIN3PARTITION( f ):
V ← domain( f )
if |V | ≤ 6

return the optimum by brute force
for X ∈
�V

1

�

add candidate {X } ∪MIN2PARTITION( f\X )
X←MINNONTRIVIAL2PARTITION( f )
for X ∈ X

add candidate MIN3PARTITION( f/X )
return minimum over all candidates

Figure 3.1: Compute a minimum 3-partition.

We first compute some candidate partitions, where one of them is a minimum non-2-size 3-partition
of f (i.e., a minimum partition of type {{v}, W1, W2} for some v ∈ V ). To do this, we compute a minimum
partition {W1, W2} of f\{v} for each v ∈ V . We next compute a minimum 2-size 2-partition X= {X1, X2}
and recursively call the algorithm for functions f/X1

and f/X2
and obtain two candidate partitions. Finally,

we take the minimum of all candidate partitions. Therefore, the noncrossing property in Lemma 3.1
produces a polynomial time algorithm for the minimum 3-partition problem.

Let us consider possible generalizations of the noncrossing property. The first one is a stronger
property for 2- and 4-partitions. Let X = {X1, X2} denote a minimum 2-partition of f . There exists a
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minimum 4-partition Y= {Y1, Y2, Y3, Y4} of f such that either X is noncrossing with Y or X1 = Y1 ∪ Y2
after some renumbering of the indices. We remark that X is not necessarily h-size for h≥ 2, and hence the
property above does not provide a polynomial divide-and-conquer algorithm for the minimum 4-partition
problem. If X is assumed to be h-size for h≥ 2, then we have additional cases, one of which also blocks
the construction of a polynomial time algorithm (See the case (iii) in Theorem 6 in [25]).

The second generalization is to directly use noncrossing property for 3- and 4-partitions. Assume
that every minimum h-size 3-partition X = {X1, X2, X3} for h ≥ 2 is noncrossing with a minimum 4-
partition. However, this does not provide a polynomial divide-and-conquer algorithm for the minimum
4-partition problem. Note that the algorithm calls itself for f/X i

, i = 1, 2, 3, where in the worst case, two
of the recursive calls have size n− 1, this implies that a simple divide-and-conquer algorithm requires
exponential time.

In this paper, we introduce the concept of compatibility to overcome this difficulty. A partition X

is compatible with partition Y, if |X| − 1 components of X are noncrossing with Y. We write X Ã Y.
Note if X and Y are 2- and 3- partitions, respectively, then the compatibility relation is identical to the
noncrossing property.

Theorem 3.2 Let f be a submodular function on at least 13 vertices. If all minimum 4-partitions are 3-size,
then every minimum non-trivial 3-partition is compatible with some minimum 4-partition.

Compatibility is a very strong property about two partitions, and it is very unlikely to hold true in
general. In fact, there are examples where a minimum 4-partition is not compatible with any minimum
5-partition, as we will see in section 7.

The proof of Theorem 3.2 can be found in the next section. We remark that the proof is based on
case analysis. Based on Theorem 3.2, it is not difficult to see that the following simple contraction based
algorithm solves the minimum 4-partition problem. We invite the readers to spot the difference between
the minimum 3-partition algorithm in Figure 3.1 and the minimum 4-partition algorithm in Figure 3.2.

3.1 The algorithm

Either there is a minimum 4-partition that is not 3-size, so there is a part of size at most 2. We try all
possible such parts, and solve the minimum 3-partition problem on the remaining part. Otherwise, there
is a 3-size minimum 4-partition. We find a minimum non-trivial 3-partition, and we know it is compatible
to some minimum 4-partition by Theorem 3.2. Therefore, we can contract two of the parts. Since we do
not know which, we try all possibilities. Finally, we collect all candidates we computed, and find the
minimum among them. The full algorithm is described in Figure 3.2.

MIN4PARTITION( f ):
V ← domain( f )
if |V | ≤ 12

return the optimum by brute force
for X ∈
�V

1

�⋃�V
2

�

add candidate {X } ∪MIN3PARTITION( f\X )
X←MINNONTRIVIAL3PARTITION( f )
for {A, B} ∈
�

X
2

�

add candidate MIN4PARTITION(( f/A)/B)
return minimum over all candidates

Figure 3.2: Compute a minimum 4-partition.

We computed O(n2) minimum 3-partitions, and computed a minimum non-trivial 3-partition. The
remaining non-recursive operations take constant time per statement.
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The minimum 3-partition problem is solvable in polynomial time as we noted in this section. Thus,
except for the proof of Theorem 3.2, what remains to be done is to provide a polynomial time algorithm
to compute a minimum nontrivial 3-partition, which is discussed in Section 5.

4 Proof of Theorem 3.2
Let V be the ground set of some submodular function f . Consider any 3-partition X= {X1, X2, X3} and
Y =
�

Y1, Y2, Y3, Y4

	

. A submodular function f on at least 13 vertices where every minimum 4-partition is
3-size, is called a valid submodular function. A configuration is valid, if it can be generated by a minimum
non-trivial 3-partition X, and a minimum 4-partition Y of some valid submodular function f .

Let M be some configuration. Consider a submodular function f , such that it has a minimum
non-trivial 3-partition X and a 3-size minimum 4-partition Y that generate M . Such functions are called
M-agreeable. If there is a minimum 4-partition Y′ of f that X is compatible with, then we say M is
f -good. If M is f -good for all M -agreeable f , we say M is good. If M is good, then any configuration
equivalent to M is also good.

If all valid configurations are good, then Theorem 3.2 is true. Indeed, for any valid submodular
function, the minimum non-trivial 3-partition and 3-size minimum 4-partition generates a good con-
figuration, which implies there is a minimum 4-partition that does not cross the minimum non-trivial
3-partition.

We use the following idea repeatedly, and hence we make it a proposition.

Proposition 4.1 LetX be a minimum partition with property P, and Y be a minimum partition with property
Q. Let X′ and Y′ be a partition with properties P and Q, respectively. If f (X) + f (Y)≥ f (X′) + f (Y′), then
Y′ is a minimum partition with property Q.

Proof: Note that f (X′)≥ f (X) and f (Y′)≥ f (Y) because X′ and Y′ have properties P and Q, respectively.
Hence, we obtain f (X′) = f (X) and f (Y) = f (Y′). □

In order to simplify the proof and avoid repeating the same set up each time, the following convention is
established.

When we try to prove a valid configuration M is good, we always consider a minimum non-trivial
3-partition X = {X1, X2, X3}, 3-size minimum 4-partition Y = {Y1, Y2, Y3, Y3} and a valid submodular
function f that generates the configuration M . Let Zi j = X i ∩ Yj be the cells of X and Y. Let ni be the
number of non-zero values in the ith row of M , and m j the number of non-zero values in the jth column
of M . From this point on, we omit the setup in all the proofs in this section.

There are simple patterns where the configurations has to be good. The following is a pattern adopted
from [14, Lemma 2.5].

Lemma 4.2 Let M be a configuration. If M11 ≥ 2, and M21, M32, M33, M34 ≥ 1, then M is good.

Proof: Define Y′ = {X1 ∪ X2 ∪ Y1, Z32, Z33, Z34} and X′ = {Z11, Z21, X3 ∪ Y2 ∪ Y3 ∪ Y4}. Then X′ is a
non-trivial 3-partition and Y′ is a 4-partition, and XÃ Y′. See Figure 4.1 for illustrations.

For any submodular function f , it holds that

f (X1) + f (Y1)≥ f (X1 ∪ Y1) + f (Z11)

f (X1 ∪ Y1) + f (X2)≥ f (X1 ∪ X2 ∪ Y1) + f (Z21)

f (X3) + f (Y2)≥ f (X3 ∪ Y2) + f (Z32)

f (X3 ∪ Y2) + f (Y3)≥ f (X3 ∪ Y2 ∪ Y3) + f (Z33)

f (X3 ∪ Y2 ∪ Y3) + f (Y4)≥ f (X3 ∪ Y2 ∪ Y3 ∪ Y4) + f (Z34).
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2+ ? ? ?
1+ ? ? ?
? 1+ 1+ 1+

(a) M

2+ ? ? ?
1+ ? ? ?
? 1+ 1+ 1+

(b) Y′

2+ ? ? ?
1+ ? ? ?
? 1+ 1+ 1+

(c) X′

Figure 4.1: The configuration M and partitions Y′ and X′ in the proof of Lemma 4.2. To understand the
illustration of Y′, note it is an colored overlay over the configuration matrix M . Each color represents a
partition class of Y′. Since the ith row and jth column represents Zi j = X i ∩ Yj together with additional
cardinally information, the illustration shows Y′ is a 4-partition with partition classes Z32, Z33, Z34 and a
set containing all the remaining elements.

2+ 1+ 1+ 1+

1+ 1+ 1+ 1+

1+ 1+ 1+ 1+

(a) Case 1

2+ ? ? ?
1+ ? ? ?
0 1+ 1+ 1+

(b) Case 2

1+ 1+ 1+ 0
1+ 1+ 1+ 0
? 1+ 1+ 2+

(c) Case 3

Figure 4.2: The configurations in the proof of Theorem 4.3.

By summing all the inequalities above, we obtain

f (X) + f (Y)≥ f (X′) + f (Y′).

By Proposition 4.1, Y′ is a minimum 4-partition, which completes the proof. □

If any configuration equivalent to M satisfies the property in Lemma 4.2, we say M contains a cross.
If M has many non-zero elements, then M contains a cross. We formalize it below.

Theorem 4.3 If M is a valid configuration where each row has at least 3 non-zero elements, then it contains
a cross, and therefore M is good.

Proof: We consider the following 3 cases.

Case 1. m j = 3 for all j ∈ {1,2,3,4}, then M has at least one entry ≥ 2, and all other values are at
least 1. Without loss of generality, assume M11 ≥ 2. See Figure 4.2a. M contains a cross.

Case 2. Assume m j ≥ 2 for all j and not all of them are 3. Without loss of generality, assume M31 = 0.
This implies M32, M33, M34 ≥ 1. Since m1 = 2, we have that M11, M21 ≥ 1, and at least one is 2. Without
loss of generality, let M11 ≥ 2. See Figure 4.2b. This gives us a cross.

Case 3. Consider m j = 1 for some j. Without loss of generality, we can assume m4 = 1, and M14 =
M24 = 0. This shows M34 ≥ 2. We also assume that M32, M33 ≥ 1, because n3 ≥ 3.

See Figure 4.2c for the configuration.
If M31 = 0, then M21 or M11 is at least 2, and we obtain a cross. Assume that M31 ≥ 1. If

any Mi j for i ∈ {1,2} and j ∈ {1,2,3} is 2, then there exists a cross. Hence the only remaining
case is when Mi j = 1 for all i ∈ {1,2} and j ∈ {1,2,3}. Let X′ = {X1 ∪ X2 ∪ Y1 ∪ Y2, Z33, Z34} and
Y′ = {X3 ∪ Y3 ∪ Y4, Z11, Z12, Z21 ∪ Z22}. X′ is a non-trivial 3-partition. Because Mi j = 1 for each i ∈ {1, 2}
and j ∈ {1,2, 3}, Y′ is a 4-partition. See Figure 4.3 for illustration.
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1 1 1 0
1 1 1 0

1+ 1+ 1+ 2+

(a) M

1 1 1
1 1 1

1+ 1+ 1+ 2+

(b) Y′

1 1 1
1 1 1

1+ 1+ 1+ 2+

(c) X′

Figure 4.3: The configuration M and partitions Y′ and X′ in the Case 3 of the proof of Theorem 4.3.

1+ 1+ 0 0
? ? ? ?
? ? ? ?

(a) M

1+ 1+

? ? ? ?
? ? ? ?

(b) Y′

1+ 1+

? ? ? ?
? ? ? ?

(c) X′

Figure 4.4: The configuration M and partitions Y′ and X′ in the proof of Lemma 4.4.

By submodularity, it holds that

f (X3) + f (Y3)≥ f (X3 ∪ Y3) + f (Z33)

f (X3 ∪ Y3) + f (Y4)≥ f (X3 ∪ Y3 ∪ Y4) + f (Z34)

f (X1) + f (Y1)≥ f (X1 ∪ Y1) + f (Z11)

f (X1 ∪ Y1) + f (Y2)≥ f (X1 ∪ Y1 ∪ Y2) + f (Z12)

f (X1 ∪ Y1 ∪ Y2) + f (X2)≥ f (X1 ∪ X2 ∪ Y1 ∪ Y2) + f (Z21 ∪ Z22).

According to the above, it holds that

f (X) + f (Y)≥ f (X′) + f (Y′).

We invoke Proposition 4.1, and it shows Y′ is a minimum 4-partition. However, M11 = 1, and hence Y′ is
not 3-size. A contradiction to M being a valid configuration. □

The following lemma is an adaptation of [14, Lemma 2.7].

Lemma 4.4 Let M be a valid configuration with a row with exactly two non-zeros. Then M is good.

Proof: Without loss of generality, assume M11, M12 ≥ 1 and M13 = M14 = 0. Let Y′ = {Z11, Z12, X2, X3}
and X′ = {X1 ∪ Y1 ∪ Y2, Y3, Y4}. Note that Y′ is a 4-partition and XÃ Y′. Since Y is 3-size, |Y3| ≥ 2, and
therefore X′ is a non-trivial 3-partition. See Figure 4.4 for illustration.

By submodularity, it holds that

f (X1) + f (Y1)≥ f (X1 ∪ Y1) + f (Z11)

f (X1 ∪ Y1) + f (Y2)≥ f (X1 ∪ Y1 ∪ Y2) + f (Z12).

According to the above, it holds that

f (X) + f (Y)≥ f (X′) + f (Y′).

By Proposition 4.1, Y′ is a minimum 4-partition. □

Theorem 4.5 If M is a valid configuration where there exists a row with at most two non-zero elements,
then it is good.

Proof: If any row has exactly 2 non-zero elements, then we are done by Lemma 4.4.
Hence, consider the case where a row has exactly 1 non-zero element, and no row has exactly 2

non-zero elements. Without loss of generality, let n1 = 1 and M11 ≥ 2.
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2+ 0 0 0
0 1+ 1+ 1+

0 1+ 1+ 1+

(a) M

2+

1+ 1+ 1+

1+ 1+ 1+

(b) Y′

2+

1+ 1+ 1+

1+ 1+ 1+

(c) X′

Figure 4.5: The configuration M and partitions Y′ and X′ in Case 2 of the proof of Theorem 4.5.

1+ 0 0 0
1+ 2+ 1+ ?
1+ ? ? 1+

(a) M

1+

1+ 2+ 1+ ?
1+ ? ? 1+

(b) Y′

1+

1+ 2+ 1+ ?
1+ ? ? 1+

(c) X′

Figure 4.6: The configuration M and partitions Y′ and X′ in Case 4 of the proof of Theorem 4.5.

Case 1: ni = 1 for some i ∈ {2,3}. Then M is good because XÃ Y.

Case 2: n2 = n3 = 3, m1 = 1. Then we have Mi1 = 0 for i ∈ {2,3} and Mi2, Mi3, Mi4 ≥ 1 for each
i ∈ {2,3}. Since |Y1| ≥ 3, we have M11 ≥ 2.

Let Y′ = {X2 ∪ Y2, X1, Z33, Z34} and X′ = {X3 ∪ Y3 ∪ Y4, Y1, Z22}. Then Y′ is a 4-partition, XÃ Y′, and
X′ is a non-trivial 3-partition. See Figure 4.5 for illustration.

By submodularity, it holds that

f (X2) + f (Y2)≥ f (X2 ∪ Y2) + f (Z22)

f (X3) + f (Y3)≥ f (X3 ∪ Y3) + f (Z33)

f (X3 ∪ Y3) + f (Y4)≥ f (X3 ∪ Y3 ∪ Y4) + f (Z34).

According to the above, it holds that

f (X) + f (Y)≥ f (X′) + f (Y′).

By Proposition 4.1, Y′ is a minimum 4-partition.

Case 3: n2, n3 ≥ 3, m1 = 2. Without loss of generality, we can assume that M21 ≥ 1 and M31 = 0. Since
|Y1| ≥ 3, we have M11 ≥ 2 or M21 ≥ 2, i.e.,

M =
2+ 0 0 0
1+ 1+ 1+ ?
0 1+ 1+ 1+

or M =
1+ 0 0 0
2+ 1+ 1+ ?
0 1+ 1+ 1+

.

In either case, there is a cross, and M is good.

Case 4: n1 = 1, n2, n3 ≥ 3, m1 = 3. Without loss of generality, we can assume that M23 ≥ 1. We
also assume that M34 ≥ 1 since n3 ≥ 3. Since Y is 3-size and M12 = 0, without loss of generality, we
can assume that M22 ≥ 2. Otherwise, we can exchange X2 and X3, and then exchange Y3 and Y4. Let
X′ = {X3 ∪ Y1 ∪ Y4, Z22, Z23} and Y′ = {X2 ∪ Y2 ∪ Y3, X1, Z31, Z34}. X′ is a non-trivial 3-partition, Y′ is a
4-partition and XÃ Y′. See Figure 4.6 for illustration.
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By submodularity, it holds that

f (X2) + f (Y2)≥ f (X2 ∪ Y2) + f (Z22)

f (X2 ∪ Y2) + f (Y3)≥ f (X2 ∪ Y2 ∪ Y3) + f (Z23)

f (X3) + f (Y1)≥ f (X3 ∪ Y1) + f (Z31)

f (X3 ∪ Y1) + f (Y4)≥ f (X3 ∪ Y1 ∪ Y4) + f (Z34).

According to the above, it holds that

f (X) + f (Y)≥ f (X′) + f (Y′).

By Proposition 4.1, Y′ is a minimum 4-partition. □

Theorems 4.3 and 4.5 show that all valid configurations are good, and hence prove Theorem 4.6.

Theorem 4.6 If all minimum 4-partition are 3-size, then every minimum non-trivial 3-partition is compat-
ible with some minimum 4-partition.

5 (1,ℓ)-size 3-partition
In this section, we present an algorithm for computing a minimum nontrivial 3-partition for a given
submodular function by giving an algorithm for the (1,ℓ)-size 3-partition problem. This algorithm is
based on the following noncrossing property.

Lemma 5.1 Let f : 2V → R be a submodular function with n≥ 18ℓ− 17, and let X= {X1, X2} denote a
minimum (3ℓ− 2)-size 2-partition of f . If f has a minimum (1,ℓ)-size 3-partition of (4ℓ− 3)-size, then it
contains a minimum (1,ℓ)-size 3-partition with which X is noncrossing.

Proof: Let Y= {Y1, Y2, Y3} denote a minimum (1,ℓ)-size 3-partition of (4ℓ− 3)-size of f . Let M be the
configuration generated by X and Y. Let Zi j = X i ∩ Yj .

Suppose any row of M has exactly one non-zero. The proof is trivial.
We say that M contains a cross if there exist i and j such that Mi′ j ≥ 3ℓ− 2 for i′ ̸= i, Mi j′ ≥ 1 for all

j′ ̸= j, and Mi j′ ≥ ℓ for some j′ ̸= j. We also say that the cross is centered at (i, j). See Figure 5.1 for an
example.

If M contains a cross, then there is a minimum nontrivial 3-partition which is noncrossing with X.
Indeed, without loss of generality, let M11 ≥ ℓ, M12 ≥ 1 and M23 ≥ 3ℓ−2. Define Y′ = {X2∪Y3, Z11, Z12}
and X′ = {X1 ∪ Y1 ∪ Y2, Z23}. Certainly X Ã Y′. We note that Y′ is a (1,ℓ)-size 3-partition, and X′ is a
(3ℓ− 2)-size 2-partition. By submodularity,

f (X1) + f (Y1)≥ f (X1 ∪ Y1) + f (Z11)

f (X1 ∪ Y1) + f (Y2)≥ f (X1 ∪ Y1 ∪ Y2) + f (Z12)

f (X2) + f (Y3)≥ f (X2 ∪ Y3) + f (Z23).

Hence we obtain

f (X) + f (Y)≥ f (X′) + f (Y′).

Therefore, Y′ is a minimum (1,ℓ)-size 3-partition where X does not cross it.
Consider the case where each row of M has at least 2 non-zero elements. Because |V | ≥ 18ℓ− 17

and M has 6 entries, at least one entry in M has value at least 3ℓ− 2. We can assume M23 ≥ 3ℓ− 2.
Without loss of generality, let M11 ≥ M12. Next, we show all possible configurations have a cross.
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ℓ+ 1+ ?
? ? 3ℓ− 2+

Figure 5.1: A configuration M , with a cross that is centered at (1, 3). Because M23 ≥ 3ℓ−2, M11, M12 ≥ 1,
and M11 ≥ ℓ.

ℓ+ 1+ ?
? ? 3ℓ− 2+

(a) Case 1

ℓ+ 0 1+

? 3ℓ− 2+ 3ℓ− 2+

(b) Case 2

ℓ− 1− ℓ− 1− ℓ+

? 3ℓ− 2+ 3ℓ− 2+

(c) Case 3

Figure 5.2: The configurations in the proof of Lemma 5.1. Note in Case 3, the top right element is also
known to be non-zero.

Case 1: M11 ≥ ℓ, M12 ≥ 1. See Figure 5.2a. There is a cross centered at (1,3).

Case 2: M11 ≥ ℓ, M12 = 0. This shows M13 ≥ 1 and M22 ≥ 3ℓ− 2. See Figure 5.2b. There is a cross
centered at (1,2).

Case 3: 1 ≤ M11 ≤ ℓ − 1. This shows M22 ≥ 3ℓ − 2, because M12 + M22 ≥ 4ℓ − 3. Also, M13 ≥
4ℓ− 3−M11 −M12 ≥ ℓ. See Figure 5.2c. There is a cross centered at (1, 2).

□

In order to use the noncrossing property in Lemma 5.1, we need to compute a minimum (3ℓ−2)-size
2-partition of the submodular function f .

Vazirani-Yannakakis [29] proposed an algorithm for enumerating all 2-cuts in a given graph, in the
order of nondecreasing weights. Nagamochi-Ibaraki [23] remarked that Vazirani-Yannakakis’ algorithm
can be extended to enumerating all 2-partitions in an arbitrary system.

For two disjoint sets S, T ⊆ V , a family {X , V \ X } is called an (S, T )-partition if S ⊆ X and T ⊆ V \ X .

Lemma 5.2 (Vazirani-Yannakakis [29], Nagamochi-Ibaraki [23]) Let f : 2V → R be an arbitrary func-
tion with n = |V |. All the 2-partitions {X , V \ X } of V can be enumerated in the order of nondecreasing
weights with O(nτ∗(n))-time delay between two consecutive outputs, where τ∗(n) denotes the time required
for computing a minimum (S, T )-partition of f .

It is well-known that a minimum (S, T )-partition in the submodular function f can be computed in
τ(n) time, i.e., the time required for submodular function minimization. The number of 2-partitions that
are not k-size is O(nk−1). Thus after enumerating O(nk−1) 2-partitions, we can find a minimum k-size
2-partition, which implies the following lemma.

Lemma 5.3 Let f : 2V → R be a submodular function with n = |V |, and let k (≥ 2) denote a positive
integer. A minimum k-size 2-partition of f can be computed in O(nkτ(n)) time.

We are now ready to describe an algorithm for the minimum nontrivial 3-partition problem. See
Figure 5.3. It is similar to both MIN3PARTITION and MIN4PARTITION.

Lemma 5.4 For a submodular function f : 2V → R with n = |V |, there is an algorithm that computes a
minimum (1,ℓ)-size 3-partition of f in O(n4ℓ−3τ(n)) time.

Proof: Consider MIN(1,ℓ)SIZE3PARTITION. Finding the minimum 3ℓ−2-size 2-partition takes O(n3ℓ−2τ(n))
time. Finding the minimum non-4ℓ− 3-size 3-partitions takes O(n4ℓ−4τ(n)) time.
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MIN(1,ℓ)SIZE3PARTITION( f ,ℓ):
V ← domain( f )
if |V | ≤ 18ℓ− 17

return the optimum by brute force
for X ∈
⋃4ℓ−4

j=1

�V
j

�

add candidate {X } ∪MIN2PARTITION( f\X )
X←MINSIZE2PARTITION( f , 3ℓ− 2)
for X ∈ X

add candidate MIN(1,ℓ)SIZE3PARTITION( f/X ,ℓ)
return minimum over all candidates

Figure 5.3: Compute a minimum (1,ℓ)-size 3-partition.

Let T(n) denote the running time of MIN(1,ℓ)SIZE3PARTITION. The following recursive relation
holds. T (n) = O(1) for n≤ 18ℓ− 17, and otherwise

T (n) = max
a+b=n

1≤a≤b≤n−3ℓ+1

T (a+ 1) + T (b+ 1) +O(n4ℓ−4τ(n)) = O(n4ℓ−3τ(n)).

□

By setting ℓ= 2, we obtain the following corollary.

Corollary 5.5 For a submodular function f : 2V → R with n= |V |, there is an algorithm that computes a
minimum nontrivial 3-partition of f in O(n5τ(n)) time.

6 Time complexity of Algorithm MIN4PARTITION

In this section, we analyze the time complexity of Algorithm MIN4PARTITION.
Since the minimum 3-partition problem can be solved in O(n3τ(n)) time [26], the minimum non-3-

size 4-partitions can be found in O(n5τ(n)) time. A minimum nontrivial 3-partition can be computed in
O(n5τ(n)) time by Corollary 5.5.

Let T (n) be the running time of the 4-partition algorithm in Figure 3.2 with n= |V |. The following
recursive relation holds. T (n) = O(1) for n≤ 12, and otherwise

T (n) = max
a+b+c=n

1≤a≤b≤c≤n−3

T (a+ 2) + T (b+ 2) + T (c + 2) +O(n5τ(n)) = O(n6τ(n)).

As a result, we have the following main theorem.

Theorem 6.1 For a submodular function f : 2V → R with n = |V |, Algorithm MIN4PARTITION( f ) computes
a minimum 4-partition of f in O(n6τ(n)) time.

As a minimum k-partition in symmetric submodular functions can be found in n2k−2 calls to minimum
(k− 1)-partition in submodular functions [4], we observe the following corollary.

Corollary 6.2 For a symmetric submodular function f : 2V → R with n = |V |, a minimum 5-partition can
be found in O(n14τ(n)) time.
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7 Concluding remark
In this paper, we have considered the minimum 4-partition problem of submodular functions. Using
compatibility for 3- and 4-partitions, we have provided a polynomial-time (exact) algorithm, which
settles the complexity status of the problem [11,22,23,26,31,34].

It is still open if the minimum k-partition problem is solvable in polynomial time for each fixed k.
This is left for future work. Since all our algorithms are very similar, it seems to indicate a generalization
to minimum 5-partition problem.

Unfortunately, we remark the obvious generalization of our algorithm does not work for minimum
5-partition. Consider the following configuration M , if a submodular function with unique minimum
4-partition and minimum 5-partition generates it as a configuration, then the minimum 4-partition is not
compatible with any minimum 5-partition.

M =

1+ 0 0 0 0
1+ 0 0 0 0
1+ 1+ 1+ 0 0
1+ 0 0 1+ 1+

.

In fact, even in graphs, there is an infinite number of examples that generates the above configuration
M . Consider a graph on 8 vertices. The vertices are 0 to 7. The edges are {0,1}, {1,2}, {0,2}, {1,5},
{2,3}, {2,4}, {2,5}, {3,4}, {5,6}, {5,7} and {6,7}. All edges have unit weight, except the edge {1,2},
which has weight 1

2 . See the Figure 7.1 for the example.

1

0

765

432

Figure 7.1: The 8 vertex counterexample, the light edge is the edge of 1/2 weight.

The graph has a unique minimum 4-partition {0}, {1}, {2,3,4}, {5,6,7}, which has value of 4.5.
There is also a unique minimum 5-partition. {0, 1, 2, 5}, {3}, {4}, {6}, {7} with value 6. One can blow up
this example to arbitrarily large graph by replacing each vertex with a clique with large edge weights.
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