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Abstract

In the game of Graph Nim, players take turns removing one or more edges incident to a chosen vertex in
a graph. The player that removes the last edge in the graph wins. A spider graph is a champion if it has a
Sprague-Grundy number equal to the number of edges in the graph. We investigate the the Sprague-Grundy
numbers of various spider graphs when the number of paths or length of paths increase.

1 Introduction
Nim is an impartial two-player game traditionally played with multiple piles of sticks or stones.

Definition An impartial game is a game in which at any given state state of the game, each player has the same
set of possible moves [5].

On a player’s turn, one or more stones are removed from a pile, and the player that removes the last stone (or
stones) is the winner [5]. We want to study a variation of this game, called Graph Nim. In Graph Nim, players
remove edges incident to a vertex and the player to remove the last edge(s) is the winner [1].

Definition A move in a game of Graph Nim is the removal of one or more edges adjacent to a single vertex.

In particular, we are interested in patterns and periodic behavior of the Sprague-Grundy number, or nimber, as we
vary the graph that we are playing on.

Definition The minimal excluded value, or mex, of a set of integers is the smallest non-negative integer not included
in the set.

Definition The followers of a graph G are the set of all graphs that can be reached in one move on G. We denote
the followers of G as F(G).

Using the previous definitions, we can define the Sprague-Grundy number as follows:

Definition Let G be a graph. We define a function g(G) = mex({g(H)|H ∈ F(G)}). We call g(G) the Sprague-
Grundy number, or nimber of G. We denote {g(H)|H ∈ F(G)}= gF(G).

The Sprague-Grundy Theorem allows us to assume that games of Graph Nim actually have a Sprague-Grundy
number.

Theorem 1.1 (Sprague-Grundy Theorem) Every impartial game under the normal play convention is equivalent to a
nimber.

We have the following theorem for disjoint games.

Theorem 1.2 The Sprague-Grundy number of a game consisting of disjoint components is the nim-sum of the Sprague-
Grundy numbers of those components [3].
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Definition We define the nim-sum of two non-negative integers as binary addition with no carries. We denote it
as ⊕ [2].

We have shown that for certain classes of graphs the nimbers become periodic as we make the graphs larger.

Definition A spider graph is a graph with one vertex of degree greater than 2 and all other vertices with degree at
most 2. We will extend the class of spider graphs to include paths for our purposes.

For example, the graph in Figure 1 is a spider graph.

Figure 1.1. A spider graph

By studying spider graphs, we describe methods for determining the nimbers of several different types of
spiders used in a game of Graph Nim. We are interested in the periodicity of the nimbers as we increase the length
and number of paths attached to the spider. The Sprague-Grundy number of a game analyzes whether or not the
“first player” has a winning strategy. A non-zero nimber ensures that the first player will always win if he plays the
correct strategy. A nimber of zero means that the first player does not have a winning strategy and will always lose
if his opponent plays the correct strategy [2].

To find the Sprague-Grundy number of a graph G, we want to find the minimal excluded value out of the
Sprague-Grundy numbers of all graphs that can be obtained in one move on G.

For example, the graph in Figure 1.2 has the followers in Figure 1.3.

Figure 1.2. The graph G

3 2 0

0 1 0

2

Figure 1.3. Followers of G and their S-G Numbers

The nimber for the graph in Figure 1.2 is g(G) =mex({3,2, 1,0}) = 4.
The following result bounds the Sprague-Grundy number for any graph.
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Theorem 1.3 g(G)≤ e(G) where G is a graph and e(G) is the number of edges in G.

Proof: Proof by contradiction.
Let G be a counterexample with a minimal number of edges. A graph with no edges has a nimber of 0, thus it
can’t be a counterexample, and thus e(G) > 0. This means g(G) > e(G), so there must be a follower G′ ∈ F(G)
whose nimber is e(G). e(G)> e(G′), since G′ is a follower of G. This means that g(G′)> e(G′), which makes G′ a
counterexample as well. We assumed that G was the minimal counterexample, so this is a contradiction. Thus
g(G)≤ e(G). �

From now on we will use e(G) to denote the number of edges in G.
We can think of a spider as consisting of a central vertex, or a body, and a set of paths adjacent to it, the legs.

Definition The body of a spider graph is the vertex of degree > 2.

Definition The legs of a spider graph are the paths connected to the body.

There are two distinct types of moves in Graph Nim on spider graphs, we call them stomps and cuts.

Definition A stomp removes one or more edges adjacent to the body.

Definition A cut removes edges not adjacent to the body.

We want to study spider graphs that are somehow related to see if there is any pattern to their Sprague-Grundy
numbers. To do this, we consider a mapping between spider graphs and integer partitions. If a spider graph
consists of a1 legs of length 1, a2 legs of length 2, . . ., an legs of length n, we represent this graph by the partition

(n, . . . , n
︸ ︷︷ ︸

an times

, n− 1, . . . , n− 1
︸ ︷︷ ︸

an−1 times

, . . . , 1, . . . , 1
︸ ︷︷ ︸

a1 times

).

We have created programs in both Java and Sage to calculate the nimbers of various graphs represented as
partitions and output them in lists that we can sort and analyze. After looking through the data in the Appendix, a
few simple patterns were observed.

2 Sprague-Grundy Numbers of Spider Graphs
First, we consider spider graphs with k legs of length 1.

Definition A k-star is a graph consisting of a single vertex and k paths of length 1 adjacent to the vertex. We
denote a k-star as Sk.

Theorem 2.1 For all k ≥ 1, g(Sk) = k where Sk is a star graph with k edges [4].

Let Pk denote a path of length k. Denote Pk ∪ . . .∪ Pk
︸ ︷︷ ︸

n times

by (n)Pk. The Sprague-Grundy numbers for paths are

known [1]. The Sprague-Grundy numbers become periodic as the length of the path grows larger than 72. We can
use the path nimbers to help analyze simple spider graphs.

Lemma 2.2 x − y ≤ x ⊕ y ≤ x + y for x , y ∈ N.

Proof: Since ⊕ is binary addition without carries, x ⊕ y ≤ x + y . Assume x ⊕ y < x − y for some x and y . Then

x = x ⊕ (y ⊕ y) = (x ⊕ y)⊕ y < (x − y)⊕ y ≤ (x − y) + y = x .

This is a contradiction. Thus, x − y ≤ x ⊕ y . �

Lemma 2.3 For a, b, k ∈ N, [a+ k..b− k] ⊆ k⊕ [a..b].

Proof: Let x ∈ [a+ k..b− k]. We can write t ⊕ k = x . Then x ⊕ k = t and x − k ≤ t ≤ x + k by Lemma 2.2. Thus
t ∈ [(a+ k)− k..(b− k) + k] = [a..b] so x ∈ k⊕ [a..b]. �

Lemma 2.4 For b, k ∈ N, [0..b− k] ⊆ k⊕ [0..b].

Proof: Let x ∈ [0..b− k]. We can write t ⊕ k = x , so x ⊕ k = t. This implies t ∈ [0− k..(b− k) + k]. Since t ≥ 0,
we must have that t ∈ [0..b]. Thus x ∈ k⊕ [0..b]. �
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3 Champion Spiders
Definition A champion spider is a spider graph whose Sprague-Grundy number is equal to its number of edges. In
other words, g(nan(n− 1)an−1 . . . 1a1) = n(an) + (n− 1)(an−1) + . . .+ a1 where n is the maximum leg length.

Theorem 3.1 g(2a21a1) = 2a2 + a1 if a1 ≥ 2a2 − 2 for a1, a2 ∈ N.

Proof: Proof by induction on a2.
Base case: a2 = 0. g(201a1) = a1 for all a1 by Theorem 2.1.

Inductive Step:
Assume the hypothesis is true for all integers less than a2. Consider 2a2 1a1 , where a1 ≥ 2a2 − 2. The followers

of 2a21a1 are as follows:

1. 2a2−11a1+1

2. 2a2−11a1

3. 2 j1k ∪ (a2 − j)P1 for all j ≤ a2, k ≤ a1 and j + k < a2 + a1. Note:

g(2 j1k ∪ (a2 − j)P1) =

¨

g(2 j1k ∪ P1) if a2 − j ≡ 1 mod 2

g(2 j1k) if a2 − j ≡ 0 mod 2.

Claim: {0, . . . , 2a2 + a1 − 1} ⊆ gF(2a21a1). For any h ∈ {0, . . . , 2a2 + a1 − 1}, there are three cases:

Case 1 h= 2a2 + a1 − 1 = g(2a2−11a1+1) by induction.

Case 2 h= 2a2 + a1 − 2 = g(2a2−11a1) by induction.

Case 3 h < 2a2 + a1 − 2. Note that we can write h = 2 j + k where 0 ≤ j ≤ a2 − 1 and 2 j − 2 ≤ k < a1. We will
show that there exists a follower graph with nimber equal to h for all h in this range.

1. If a2 − j is even, then g(2 j1k) = 2 j + k = h by hypothesis.

2. If a2 − j is odd and h is odd, then k is odd. Therefore k > 2 j − 2 and k− 1≥ 2 j − 2, so

g(2 j1k−1 ∪ P1) = (h− 1)⊕ 1= h.

3. If a2 − j is odd and h is even. k < a1 thus k+ 1≤ a1, so

g(2 j1k+1 ∪ P1) = (h+ 1)⊕ 1= h.

This shows {0, . . . , 2n+a1−1} ⊆ gF(2a2 1a1), and because g(2a2 1a1)≤ 2a2+a1, we have g(2a2 1a1) = 2a2+a1. �

Definition The integer interval between a and b is the set of consecutive integers between and including a and b,
denoted [a..b].

Definition The numbers [a..k], a ≥ 0, are generated by a graph G if there exists a follower of G whose Sprague-
Grundy number equals c for all c ∈ [a..k].

We denote k⊕ [a..b] = {k⊕ x |x ∈ [a..b]}. Similarly, we denote k+ [a..b] = {k+ x |x ∈ [a..b]}.

4 Stability
Definition Define the operation + between two spiders to be

nan . . . 1a1 + nbn . . . 1b1 = nan+bn . . . 1a1+b1

Note that this is a vertex contraction on the two root vertices and that it is is associative and commutative.

Definition The spider G is said to be stable if all spiders of the form G + 1k where k ≥ 0 are champion spiders.

In other words, if a spider is stable then we can add any number of legs of length 1 to the spider and the resulting
spider is champion.

Definition Let f (G) be the smallest natural number such that G + 1 f (G) is stable. If no such number exists, it is
defined as∞.
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4.1 Algorithm for finding f (G)
In order to find an algorithm to calculate f (G), we need an algorithm to decide if G + 1a1 is stable. The following
theorem provides a method for determining a graph’s stability by checking only a finite number of cases. This
implies that an algorithm to find f (G) exists.

Theorem 4.1 Let G be a spider. If G + 1a1 is champion for 0≤ a1 ≤ d where d = 13+ e(G), then G is stable.

Proof: To show that G + 1a1 is stable, we must show that G + 1a1 is champion for all a1 ≥ 0. We induct on a1.
Base case We have that G + 1a1 is champion for 0≤ a1 ≤ d by the inductive hypothesis.
Inductive Step Assume the hypothesis is true for all d < a1 < m. Consider the case when m= a1. In order to

show G + 1a1 is a champion, we have to show gF(G + 1a1) = [0..e(G + 1a1)− 1].
We have

{g(G + 1k)|0≤ k < a1}= [e(G)..e(G + 1a1−1)] = [e(G)..e(G + 1a1)− 1]

and by Lemma 5.3, we know

gF(G + 1a1) ⊇ [0..a1 − 15] ⊇ [0..d + 1− 15] = [0..14+ e(G)− 15] = [0..e(G)− 1].

Therefore, we can see that G + 1a1 is champion. �

Using Theorem 4.1, we have an algorithm, Stable(G), to check if G is stable.

stable(G):
bound ← 13+ e(G)
for k from 0 to bound:

if e(G + 1k) 6= g(G + 1k):
return false

return true

An algorithm for computing f (G) follows by checking if G+1k is stable for every k. If the algorithm terminates,
then we found f (G). Otherwise f (G) =∞. Note that we have no bounds on f (G), and thus there is no way to
determine that f (G) =∞.

f(G):
for k from 0 to∞:

if stable(G + 1k):
return k

Example This algorithm calculates f (31) = 2. That is, when a1 ≥ 2, 311a1 is champion, and 3112−1 is not a
champion. These values can be verified by observing 311k is a champion for k ∈ [2..2+ 3+ 1] = [2..6]. Similarly,
it finds f (41) = 4 by checking 411k is a champion for k ∈ [4..4+ 4+ 1] = [4..9].

4.2 A result about champions, f (G) and f (G + 21)
Theorem 4.2 For all spiders G,

f (G + 21)≤ f (G) + e(G) + 15

Proof: For convenience, let N = e(G) + a1 + 2.
If f (G) =∞ then the theorem is trivially true.
Suppose f (G) is finite, and let c′ = f (G) + (N − 2− a1) + 15. We want to show for any a1 ≥ c′, G + 21 + 1a1 is

a champion. If gF(G + 21 + 1a1) = [0..N − 1], then G + 21 + 1a1 is a champion. Consider the following three cases
that will generate all the nimbers in the range.

Case 1 The follower graphs G + 1a1+1 and G + 1a1 have the nimbers N − 1 and N − 2 respectively.
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Case 2 Consider the set of graphs X = {G + 1 f (G) ∪ P1, G + 1 f (G)+1 ∪ P1, . . . , G + 1a1 ∪ P1}. Each one is a follower
of G + 21 + 1a1 . Note that all of these graphs are champion spiders union a path of length 1. Thus, we get

{g(x)|x ∈ X }= 1⊕ [ f (G) + e(G)..e(G) + 2+ ai]
= 1⊕ [c′ − 15..N − 2]
⊇ [c′ − 14..N − 3]

by Lemma 2.3.

Case 3 Using Corollary 5.3, we know

gF(G + 21 + 1a1) ⊇ [0..a1 − 15] ⊇ [0..c′ − 15]

The three sets cover the entire interval [0..N − 1], therefore G + 21 + 1a1 is a champion for all a1 ≥ c′.

c′ = f (G) + (N − 2− a1) + 15= f (G) + e(G) + 15≥ f (G + 21)

. �

Thus, we have a bound on f (G + 21) in terms of f (G).

5 Periodicity in the Discrepancy
It turns out, not all spiders G admit a finite f (G), however, they still have periodic behavior. It is captured by the
notion of discrepancy.

Definition The discrepancy of a graph G, d(G), is defined as

d(G) = e(G)− g(G)

Notice that champion spiders are precisely the spiders with discrepancy 0.

Definition If G is a graph, v a vertex of G. Define G +v Sk as the graph produced by vertex contraction of v and
the body of Sk. Let {ai} be a sequence, such that ai = d(G +v Si). If the sequence is eventually periodic, then the
period is pv(G) and starting point is cv(G).

Theorem 5.1 Let G be a graph and v a specific vertex on G, and G′ is a graph can be obtained by remove all edges
of v from G, then gF(G +v Sk) ⊇ [0..k − 1 − g(G′)] ⊇ [0..k − 1 − e(G)]. If v is not a isolated vertex in G, then
gF(G +v Sk) ⊇ [0..k− g(G′)] ⊇ [0..k− e(G)]

Proof: G′∪S j is a follower graph for all j ∈ [0..k−1]. Thus we get all values in g(G′)⊕[0..k−1] ⊇ [0..k−1−g(G′)] ⊇
[0..k− 1− e(G)]. When v is not an isolated vertex, G′ ∪ Sk is also a follower graph, and this give us the second
part. �

Corollary 5.2 Let G be a graph, v ∈ V (G), then d(G +v Sk)≤ 2e(G) for all k.

Corollary 5.3 For all spiders G, gF(G +v Sk) ⊇ [0..k− 15].

Proof: If G has at least one edge, then by Theorem 5.1, G +v Sk ⊇ [0..a1 − 15]. If G is empty, then gF(G +v Sk) =
[0..k− 1] ⊇ [0..k− 15]. �

Theorem 5.4 Let G be a graph, v ∈ V (G), then the sequence {an} is eventually periodic with starting position cv(G)
and period pv(G), repectively. Here ak = d(G +v Sk).

Proof: Proof by induction on e(G).
Base Case: e(G) = 0, then we have d(G +v Sk) = 0 for all k.
Inductive Step: By inductive hypothesis, we know for all G′, where G′ is a proper subgraph of G, cv(G) and

pv(G) are finite.
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Let c =max({cv(G′)|G′ ⊆ G}) and p = lcm({pv(G′)|G′ ⊆ G}). Let k ≥max(c, 2e(G)). Due to Theorem 5.1, it
is known that gF(G +v Sk) ⊇ [0..k − 1− e(G)]. Thus d(G +v Sk) is determined solely by followers that have a
potential of having nimber in between [k− e(G)..k+ e(G)− 1].

G′ +v S j for G′ ⊆ G and j ∈ [k− 2e(G)..k] captures all the graphs in that set.
Consider d(G+vSc+mp) and d(G+vSc+m′p) for some natural number m, m′. Because of periodicity, d(G′+vSc+p) =

d(G′ +v Sc+mp) for all G′ ⊆ G. So d(G +v Sc+mp) is determined by no more than the value d(G +v Sc+mp−e(G)) to
d(G +v Sc+mp−1). Similarly, d(G +v Sc+m′p) is determined by the value of d(G +v Sc+m′p−e(G)) to d(G +v Sc+m′p−1).
This shows if there exist some m, m′, m 6= m′, such that for all 0≤ i ≤ 2e(G),

d(G +v Sc+mp−2e(G)+i) = d(G +v Sc+m′p−2e(G)+i) (∗)

then we have a periodic behavior with period (m′ −m)p and starting position c +mp− 2e(G).
There are at most (2e(G))2e(G) possible values for d(G+v Sc+mp−2e(G)), d(G+v Sc+mp−2e(G)+1), . . . , d(G+v Sc+mp−1),

by pigeonhole principle, there exist m, m′ ≤ (2e(G))2e(G) + 1, such that m 6= m′ and (*) holds. �

Notice this theorem proves the conjecture B(ii) and C(ii) in [4].
The theorem implies a fast method to find cv(G) and pv(G). Running computation on path graphs Pn, we find

pv(Pn) is a power of 2 for any v and for n up to 30.

Conjecture 5.5 pv(G) is a power of 2 for all graph G and any vertex v in G.

This is not suprising, since ⊕ is effectively working over a group of 2n elements when the integer inputs are
bounded.

6 Conjectures on Champion Spiders

6.1 3a32a21a1

Conjecture 6.1 3a3 2a2 1a1 is a champion spider if a2 > 0 and for all 3i2 j ⊆ 3a3 2a2 , a1 > f (3i2 j) + 15 where f (3i2 j)
is defined in Section 4.

Conjecture 6.2 Let a3 ≥ 10. For

a1 ≥

¨

3a3 − 7 if a3 even
3a3 − 6 if a3 odd,

3a31a1 is champion.

We formed this conjecture by looking at values of d(3a31a1), which are contained in Appendix A. After a certain
number of 1s, we noticed that the discrepancy became zero and stayed there for larger values of a1, indicating
that these graphs become stable after a point.

Conjecture 6.2 can be shown true for a given a3 by applying a refined version of Theorem 4.1. This theorem
states that we only need to verify if d(3a3 1k) = 0 for all 3a3 − 6≤ k ≤ 6a3 − 5 if a3 is odd, and if d(3a3 1k) = 0 for
all 3a3 − 7≤ k ≤ 6a3 − 6 if a3 is even. We have done this for all a3 ≤ 30.

In fact, if we call m the number of ones for which the graphs become stable, we found predictable behavior of
d(3a31m−1), d(3a31m−2), . . . , d(3a31m−5) for a3 ≥ 12. In particular, we have the following conjecture.

Conjecture 6.3 Let a3 ≥ 12. For

a1 =

¨

3a3 − 7 if a3 even
3a3 − 6 if a3 odd,

3a31a1 is stable if and only if we get the following:
For a3 even,

d(3a313a3−8) = 3

d(3a313a3−9) = 0

d(3a313a3−10) = 4

d(3a313a3−11) = 4

d(3a313a3−12) = 8
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For a3 odd,

d(3a313a3−7) = 5

d(3a313a3−8) = 0

d(3a313a3−9) = 0

d(3a313a3−10) = 3

d(3a313a3−11) = 5

Example Let a3 = 15. Then, let a1 = 3a3 − 6= 39. If we calculate d(3a3 1a3−6−i) for i ∈ [1, 2, 3, 4, 5], we get the
desired values 5,0,0,3,5. This means that 315139 is champion. Alternatively, if we examine a spider of the form
3i1 j that we know to be champion that satisfies the requirements on i and j, we can look it up in the table and if
the conjecture is true, we will see the forementioned pattern in the discrepancies of smaller graphs.

7 Conclusion
We have developed methods for computing the Sprague-Grundy numbers of certain types of spider graphs.
Ultimately, our results discuss only a small subset of these graphs. We hope in the future to be able to extend our
results using the new methods presented in Section 5. In addition, we plan to further work on the conjectures
in Section 6 and show that the graphs 3a32a21a1 become stable. Additionally, we would like to be able to say
something about the length of the predictable pattern in values of the discrepancy as we force a3 to be larger,
which we mention after Conjecture 6.3. It is possible that this pattern before acheiving stability could also be
generalized to other spider graphs.
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140 0 0 0 0 0 0 3 5 4 8 11 13 13 16 18 17 21 24 26 26 29
141 0 0 0 0 0 0 0 3 0 8 9 9 9 18 17 17 20 22 22 25 31
142 0 0 0 0 0 0 0 0 8 5 9 9 14 13 14 20 18 22 25 25 28
143 0 0 0 0 0 0 0 0 4 4 9 8 12 15 14 17 17 20 20 23 25
144 0 0 0 0 0 0 0 5 4 4 7 7 7 10 12 12 15 17 17 20 22
145 0 0 0 0 0 0 0 0 0 3 9 7 10 12 12 15 17 17 20 22 21
146 0 0 0 0 0 0 0 0 3 5 4 7 6 9 10 13 13 16 16 20 23
147 0 0 0 0 0 0 0 0 0 3 0 6 9 9 9 13 16 16 16 19 21
148 0 0 0 0 0 0 0 0 0 0 8 5 9 9 8 12 12 16 19 17 20
149 0 0 0 0 0 0 0 0 0 0 4 4 4 7 8 11 9 12 16 19 17
150 0 0 0 0 0 0 0 0 0 5 4 4 7 9 8 9 12 12 15 17 20
151 0 0 0 0 0 0 0 0 0 0 0 3 9 8 8 8 12 15 13 16 20
152 0 0 0 0 0 0 0 0 0 0 3 5 4 8 8 8 11 13 16 16 19
153 0 0 0 0 0 0 0 0 0 0 0 3 0 8 8 8 8 11 13 16 16
154 0 0 0 0 0 0 0 0 0 0 0 0 8 5 8 8 11 13 12 16 19
155 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 7 13 12 12 15 17
156 0 0 0 0 0 0 0 0 0 0 0 5 4 4 7 9 8 12 15 13 17
157 0 0 0 0 0 0 0 0 0 0 0 0 0 3 9 8 8 11 13 13 16
158 0 0 0 0 0 0 0 0 0 0 0 0 3 5 4 8 11 13 13 16 18
159 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 8 9 9 9 18 17
160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 9 9 14 13 14
161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 9 8 12 15 14
162 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 4 7 7 7 10 12
163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 9 7 10 12 12
164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 4 7 6 9 10
165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 6 9 9 9
166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 9 9 8
167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 7 8
168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 4 7 9 8
169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 9 8 8
170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 4 8 8
171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 8 8
172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 8
173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4
174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 4 7
175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 9
176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 4
177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
179 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4
181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
182 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
183 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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1175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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B d(n11k)
21 31 41 51 61

10 0 0 3 1 3
11 0 3 1 3 5
12 0 0 0 5 7
13 0 0 0 3 9
14 0 0 3 1 1
15 0 0 0 3 0
16 0 0 0 5 0
17 0 0 0 3 0
18 0 0 0 0 0
19 0 0 0 3 5
110 0 0 0 5 0
111 0 0 0 0 9
112 0 0 0 0 0
113 0 0 0 3 0
114 0 0 0 5 3
115 0 0 0 0 0
116 0 0 0 0 0
117 0 0 0 3 0
118 0 0 0 5 0
119 0 0 0 0 0
120 0 0 0 0 0
121 0 0 0 3 0
122 0 0 0 5 0
123 0 0 0 0 0
124 0 0 0 0 0
125 0 0 0 3 0
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