
The Shortest Kinship Description Problem∗

Chao Xu† Qian Zhang‡

Abstract

We consider a problem in descriptive kinship systems, namely finding the shortest sequence of terms that
describes the kinship between a person and his/her relatives. The problem reduces to finding the minimum
weight path in a labeled graph where the label of the path comes from a regular language. The running time of
the algorithm is O(n3 + s), where n and s are the input size and the output size of the algorithm, respectively.

To the memories of Jiaqi Zhao(1994-2016).

1 Introduction
Consider a person who is inexperienced with (consanguineous) kin terms in a particular language (e.g. Chinese).
She tries to form a description of her relation to a kin. A desirable description should be concise, and only use
terms she knows. This captures the shortest kinship description problem (SKDP). The scenario sounds like a small
hurdle exclusive to new language learners. But in reality, this can be a frustrating problem even for native speakers.
The Chinese kinship terminology is very complicated. There are few applications built to address the complication.
LessLoop Limited developed an application to calculate the correct Chinese kin term. The application gathered
over 100,000 downloads and a wide media coverage [1]. Mi Calculator implemented a similar feature before
Chinese New Year 2017. It helped users with addressing their visiting relatives in a correct manner [2]. Yet,
both applications give up when the relationship is too complicated: neither application can report a description
involving more than one term. For example, “my maternal granddaughter’s maternal granddaughter” is a relation
that cannot be described with a single Chinese term. This prompts the investigation in this paper.

A kin type is an abstract concept of the kinship between two people. The concept of mother is a kin type. A
monoid is an algebraic structure with a binary associative operation, called product, and an identity element. The
kinship monoid is an algebraic model of kin types. The monoid has four primitives: f, m, s and d representing
father, mother, son and daughter, respectively (we will use typewriter font to indicate the 4 elements). The product
of the elements represents the composition of the relations. For example, fsm would be “(ego’s) father’s son’s
mother”. Some products represent the same kin type. For example, fs and ms both represent brother. A kin term
is a name people use to refer to a kin type. For instance, “paternal grandfather” for ff, “brother” for fs and “wife”
for sm. Kin terms depend on the language, dialect, and culture [14]. The kin terms also compose by taking product
of their representing kin types. The goal is to have a concise expression of a kin type through composing available
kin terms.

Related work Modeling aspects of kin types and kin terms as a monoid has a long history (See [12] for a
historical overview). Murdock used a similar formalism of the kinship monoid, but had four extra primitives [10].
Morgan outlined six major kinship systems [9]. Our algorithm handles the Sudanese system, the most complicated
one. For non-Sudanese patterns, Boyd analyzed Arunta, Kariera and Ambrym kinship algebraically [6]. Read
analyzed the American kinship and found the underlying space is Z2 [12].

For a monoid M , a subset S and x ∈ M , the submonoid membership problem asks for a product of some elements
in S that equals x . The optimization version minimizes the number of elements in the product. It is called the
submonoid membership optimization problem (SMOP). The shortest kinship description problem is a special case of
SMOP. In general, SMOP is undecidable even for simple algebraic structures [11]. Hence, it is unclear whether an
algorithm for the shortest kinship description problem exists.

∗Chao is supported in part as a State Farm Companies Foundation Doctoral Scholar.
†Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801 chaoxu3@illinois.edu
‡School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853 qz283@cornell.edu

1

mailto:chaoxu3@illinois.edu
mailto:qz283@cornell.edu

Our contribution We give the first algorithm that runs in polynomial time with respect to the input size and
linear time with respect to the output size. It is also the first algorithm that can handle the case where the output
is more than a single term.

2 Preliminaries

2.1 Rewriting systems
We assume standard knowledge on regular and context-free languages. For an introduction, see [13]. We adapt
the notations for rewriting systems in [5]. We review a few standard notions. Let X be a set of strings, X ∗ is
the Kleene star operation: the smallest superset of X that contains the empty string and is closed under string
concatenation. If X is set of symbols, X ∗ is the set of all strings using symbols in X . For a non-terminal A in a
context-free grammar, L(A) is the set of all strings generated by A. For a regular expression R, L(R) is the set of
strings matched by R. A context-free grammar is a Chomsky normal form if all rules are of the form A→ BC or
A→ a for some non-terminals A, B and C , and terminal a. Each context-free language has a context-free grammar
in Chomsky normal form. A (string) rewriting system R on X is a relation on X ∗. A (rewriting) rule is an element
in a rewriting system. Instead of (a, b), we write a → b to emphasis it is a rule. If a → b ∈ R, w = uav, and
w′ = ubv for some strings u and v, we write w→R w′. w′ is the result after applying rule a→ b to w. w↔R w′ if
either w→R w′ or w′ →R w. w

∗
−→R w′ if w = w′ or there exists w′′ such that w→R w′′ and w′′

∗
−→R w′. w derives

w′ if w
∗
−→R w′. w↔∗

R w′ if w= w′ or there exists w′′ such that w↔R w′′ and w′′↔∗
R w′. ↔∗

R is an equivalence
relation, and we denote the equivalence class containing w as [w]R =

�

w′ | w′↔∗
R w
	

.

A string w is R normal with respect to a rewriting system R, if w
∗
−→R w′ implies w= w′. A normal string y is

called a normal form of a string x if x
∗
−→R y . R is convergent if every string has a unique normal form. The unique

normal form of w is denoted as w when there is no ambiguity about the rewriting system. A rule a→ b is length
reducing if |a|> |b|, length preserving if |a| = |b|, and length non-increasing if it is either length reducing or length
preserving.

For a rewriting system R on alphabet X and L ⊆ X ∗, the set of strings can be derived from some string in L is
∆∗R(L) =

¦

w′|w ∈ L, w
∗
−→R w′

©

. The set of strings that derive some string in L is ∇∗R(L) =
¦

w|w′ ∈ L, w
∗
−→R w′

©

. If
R is a convergent rewriting system, w↔∗

R w′ if and only if w= w′ [3, Theorem 2.1.9].

2.2 The kinship monoid and problem definition
A presentation is an ordered pair 〈X | R〉. X is the generating set or alphabet, and R ⊆ X ∗ × X ∗ are the relators. We
write S = 〈X | R〉 if S is a monoid isomorphic to X ∗/↔∗

R (i.e. the monoid on {[x]R|x ∈ X ∗} where the product is
defined as [x]R[y]R = [x y]R). For more introduction on presentation, see [7].

We proceed to define the kinship monoid. The alphabet of the kinship monoid is Σ = {f,m,s,d}. A word is
another name for strings in Σ∗. A sign string for a word w ∈ Σ∗, denoted sgn(w), is the string obtained by replacing
each f and m with +, and each s and d with -.

We define a set of relators Γ . For all a, b, c ∈ Σ,

1. (abc, c) is in Γ if sgn(abc) ∈ {+-+,-+-}, (generation cancellation)

2. (abc, a) is in Γ if sgn(abc) = --+, and {a, c} = {s,f} or {a, c} = {d,m}, (Child’s child’s parent is child if
gender agrees)

3. (ac, bc) is in Γ if sgn(ac) = sgn(bc) ∈ {-+,+-}. (siblings/spouse)

Γ is also a rewriting system on Σ. We will use [w] to denote [w]Γ . The kinship monoid is K = 〈Σ | Γ 〉.

Problem 1 (SMOP) Let M be a monoid, given X ⊆ M and y ∈ M with cost function $: X → N. Find x1, . . . , xn ∈ X
such that y = x1 · . . . · xn and

∑

i $(x i) is minimized, or return no solution exists.

The shortest kinship description problem is SMOP on K , the kinship monoid. X is the kin type of the allowed
kin terms. Each kin type x ∈ K is given as an element in w ∈ Σ∗, such that x is the product of w, when w is seen
as a sequence of elements in K . We also want a concise output. Instead of outputting the sequence of elements in
X , we order the element in X , and output the sequence of indices. Hence we obtain the shortest kinship description
problem (SKDP).

2

ff

ss
mm

dd

mm
11

dd dd

mm

dd

ss

ff mm

dd

mm

mm

mm

mm

11
11 11

Figure 2.1: On the left is Cw, where w = fsdmm and cost of w is 1. On the right is GW,$ where W = {fsdmm,ddd,mmmm},
and the cost of each word is 1. The black vertex is the special start vertex q. Edges without weight label have
weight 0.

Problem 2 (Shortest Kinship Description Problem) Let K = 〈Σ | Γ 〉 be the kinship monoid. W = w1, . . . , wk is a
sequence of elements in Σ∗ and w ∈ Σ∗ is the target element. The input also contains a cost function $: W → N. Find
a sequence a1, . . . , as such that [w] = [wa1

. . . was
] and

∑

i $(wai
) is minimized, or return no solution exists.

For a cost function $: W → N, we extend it to $∗ : W ∗→ N as follows.

$∗(w) = min
w=w1...wn

wi∈W

n
∑

i=1

$(wi)

Another way of phrasing Problem 2 is finding a word w′ ∈W ∗ ∩ [w] that minimizes $∗(w′).

2.3 Labeled graphs and algorithms
A weighted labeled graph is a graph G = (V, E) with a label function ` : E→ Σ and a weight function γ : E→ N.
Let P = e1, . . . , ek be a path. The label and weight extend to paths. `(P) = `(e1) . . .`(ek) is the concatenation of all
the labels following the path. γ(P) =

∑k
i=1 γ(ei) is the total weight of the edges in the path. The length of a path

is the number of edges in the path.
Consider a weighted labeled graph G = (V, E) and a context-free grammar N . For u, v ∈ V and A a non-terminal

in N , we define PG,N (u, v, A) to be a minimum weight uv-path such that its label is an element in L(A) (there might
be multiple paths satisfying this property, ties are broken arbitrarily). DG,N (u, v, A) is the weight of PG,N (u, v, A).
DG,N (u, v, A) =∞ if such path does not exist.

Theorem 2.1 ([4]) Given a weighted labeled graph G with n vertices and a context-free grammar N in Chomsky
normal form. N consists of t non-terminals and r rules. It takes O(n3r t) time to find a data structure such that the
following queries take O(1) time. Given u, v, A,

1. return the value of DG,N (u, v, A).

2. If DG,N (u, v, A) = DG,N (u, x , B) + DG,N (x , v, C) for some non-terminal B and C, return the rule A→ BC and x.

3. If DG,N (u, v, A) = DG,N (u, v, a) for some terminal a, return the rule A→ a.

Theorem 2.2 ([4]) Given a weighted labeled graph G with n vertices and a regular expression R of length r. It takes
O(rn2) time to compute the minimum weight st-path in G with labels in L(R).

3 Rewriting system for Kinship monoid
We construct a convergent rewriting system so all words in [w] have the same normal form.

Let R be all length reducing rules in Γ , and S be length preserving rules {fd→ md,fs→ ms,sf→ df,sm→ dm}.
The desired rewriting system is T = R∪ S. The symmetric closure of T is Γ , so w↔∗

Γ w′ if and only if w↔∗
T w′.

Additionally, let R1 consists of all the abc→ c rules in R, and R2 consists of all the abc→ a rules in R.

3

Theorem 3.1 T is a convergent rewriting system.

Proof: Apply the Knuth–Bendix completion algorithm on T [8]. The output shows T is convergent. Alternatively,
we have a tedious proof in Appendix A. �

From this point on, w is the unique normal form of w under T . In particular, we now have that [w] = [w′] iff
w= w′. In other words, [w] =∇∗T (w), the set of all words that can derive w. We can compute the normal form w
in O(|w|) time by successively applying the rules in T .

Next, we prove some basic properties of the rewriting system. We can first apply only rules in R until we get a
R normal form, and then apply S rules to reach a T normal form. In other words, ∇∗T (w) =∇

∗
R(∇

∗
S(w)). First, we

require a lemma.

Lemma 3.2 w is a R normal form iff w
∗
−→S w.

Proof: One direction is easy. w
∗
−→S w, then |w| = |w|. Suppose we can apply a R rule to w and obtain w′. w is not

a T normal form of w′, because all rules in T are length non-increasing and |w′|< |w|. A contradiction to w as the
unique T normal form of w.

For the other direction, we show that if w is a R normal form, and w→S w′, then w′ is a R normal form. Indeed,
rules in S do not change the sign string. A rule in R1 can be applied to w, then it can be applied w′ because rules
in R1 only depend on sign string. Therefore no rule in R1 can be applied to w. We now show no rules in R2 can be
applied to w either. Assume w= xab y, and w′ = xa′b y. If we can apply a R2 rule to w′, this means we have to
apply a rule of the form a′bc→ c or uva′→ a′ for some u, v, c ∈ Σ. The sign string of a′b is either -+ or +-, so
a′bc→ c is not in R2. The sign string of uva′b would be --+-. Since -+- cannot be a substring of the sign string
in w, we cannot apply rules of the form uva′→ b. Hence w′ is R normal form. �

Theorem 3.3 For any w ∈ Σ∗, ∇∗T (w) =∇
∗
R(∇

∗
S(w)).

Proof: ∇∗R(∇
∗
S(w)) ⊆ ∇

∗
T (w) is clear. For the other direction, consider a string in w′ ∈ ∇∗T (w). Let w′′ be a R

normal form of w′, hence w′ ∈ ∇∗R(w
′′). There exists a S normal form of w′′, say w′′′. Hence w′ ∈ ∇∗R(∇

∗
S(w

′′′)). w′′′

is also a R normal form by Lemma 3.2. Hence w′′′ = w is a T normal form. This shows that w′ ∈ ∇∗R(∇
∗
S(w)). �

4 A polynomial time algorithm for shortest kinship description problem
In this section, we prove the main theorem.

Theorem 4.1 (Main Theorem) Let n be the total length of the input for the shortest kinship description problem.
There is an algorithm that returns a solution in O(n3 + s) time, where s is the output length.

We outline our high level approach. Recall in SKDP, the input is a word w, a sequence of words W and a cost
function $: W → N. We seek a (concise description of a) minimum cost word in [w]∩W ∗. Our goal is to reduce
SKDP to a minimum weight path problem with its label in a regular language, so we can apply Theorem 2.2. SKDP
is equivalent to find a minimum cost word in ∇∗S(w)∩∆

∗
R(W

∗) for an appropriate extension of the cost function
to ∆∗R(W

∗). The cost function over ∆∗R(W
∗) can be modeled as a graph G′. A short regular expression describes

∇∗S(w). The problem reduces to finding a path with its label in ∇∗S(w) on G′, and we can apply Theorem 2.2 as
desired.

For a word u ∈W , a labeled graph Cu is a directed cycle with a special start vertex q. The label following q
around the cycle Cu is u. For each u ∈W , construct Cu and assign the outgoing edge from q with weight $(u), and
all other edges with weight 0. Identify all Cu’s by the start vertex. Call the resulting weighted labeled directed
graph GW,$ with label function ` and weight γ. See Figure 2.1 for example. Any qq-path in the graph has its label
in W ∗. GW,$ have the property $∗(`(P)) = γ(P) for every qq-path P. A minimum weight qq-path in GW,$ with label
in [w] gives us the desired minimum cost word in [w]∩W ∗.

However, output the minimum weight qq-path in GW,$ is not our goal. We want to find the sequence a1, . . . , as
such that wa1

. . . was
is the label of the qq-path. It is easy to add auxiliary information on the edges to return the

sequence instead. Indeed, when we construct GW,$, we also add an output function π to the edges. For exactly
one edge e in Cwi

, π(e) = i, and π(e) is the empty sequence everywhere else. The output of a path π(P) is the
concatenation of the output of the edges. For any qq-path P, the output forms the desired index sequence a1, . . . , an
such that `(P) = wa1

. . . wan
.

4

Input: w, W, $
G← G$,W

Compute the data structure for DG,N ′

Compute G′

P ← min weight qq-path in G′ with its label in ∇∗S(w)
if P does not exist

return NO SOLUTION
for each edge e = (u, v) with label a in P:

Ae ← π(PG,N ′(u, v, S′a))
return concatenation of all Ae following the path P

Figure 4.1: The algorithm

Instead of finding a minimum cost word in W ∗∩∇∗T (w), we can seek a minimum cost word in∆∗R(W
∗)∩∇∗S(w).

We extend the cost function $∗ from W ∗ to ∆∗R(W
∗). Let $∗R :∆∗R(W

∗)→ N defined as follows,

$∗R(w) = min
w′

∗−→Rw
w′∈W ∗

$∗(w′)

Theorem 4.2 For every w ∈ Σ∗, W ⊆ Σ∗ and cost function $∗ : W ∗→ N,

min
�

$∗(w′) | w′ ∈W ∗ ∩∇∗T (w)
	

=min
�

$∗R(w
′)|w′ ∈∆∗R(W

∗)∩∇∗S(w)
	

Proof: Let a = min
�

$∗(w′) | w′ ∈W ∗ ∩∇∗T (w)
	

and b = min
�

$∗R(w
′)|w′ ∈∆∗R(W

∗)∩∇∗S(w)
	

. For every w′ ∈
W ∗ ∩∇∗T (w), there exists w′′ ∈∆∗(w′)∩∇∗S(w). Hence $∗R(w

′′)≤ $∗(w′). Therefore a ≥ b. On the other hand, for
every w′ ∈∆∗R(W

∗)∩∇∗S(w), there exists w′′ ∈W ∗ such that w′′ ∈ ∇∗R(w
′) and $∗(w′) = $∗R(w

′′). By Theorem 3.3,
∇∗T (w) =∇

∗
R(∇

∗
S(w)). We have w′′ ∈W ∗ ∩∇∗T (w). Therefore a ≤ b. �

Let G′ be a graph such that the label of qq-paths forms∆∗R(W
∗), and the minimum qq-path with label w has cost

equals $∗R(w). Finding a minimum qq-path in G′ with its label in ∇∗S(w) would solve the problem. The existence of
such graph follows from a general construction in [11], where we shall describe here. Let G = GW,$. Consider
the context-free grammar N define as follows: For every rule a1a2a3→ a ∈ R, there is a rule Sa → Sa1

Sa2
Sa3

. For
every Sa, there is a rule Sa → a. The rules are defined so L(Sa) =∇∗R(a). N is not a Chomsky normal form, but
there exists a Chomsky normal form N ′ with non-terminals S′a for each Sa, such that L(S′a) = L(Sa). We define the
graph G′ as follows: the vertices are the vertices in G, for each u, v ∈ V and a ∈ Σ, if DG,N ′(u, v, S′a) 6=∞, then
there is an edge uv with label a and cost DG,N ′(u, v, S′a).

Next, we establish ∇∗S(w) can be matched by a regular expression of length O(|w|). No rule in S changes the
sign string. Because -+- and +-+ are not substring of the sign string of a R normal word, the positions where one
can apply S rules are all disjoint. Hence we have the following lemma.

Lemma 4.3 For some n, w = u1v1u2 . . . vnun+1 such that for each i, sgn(ui) consist of the same sign, |vi | = 2, and
wi → vi ∈ S for some wi . For any element w′ ∈ ∇∗S(w), it is of the form w′ = u1v′1u2 . . . v′nun+1, where v′i ∈ {vi , wi}
for all 1≤ i ≤ n.

By Lemma 4.3, it is easy to construct a regular expression of O(|w|) length that matches ∇∗S(w) in linear time.
First find w from w in O(|w|) time. If w= u1v1u2 . . . vnun+1 as in Lemma 4.3, the regular expression is simply

u1(v1|w1)u2 . . . (vn|wn)un+1.

4.1 The algorithm
Figure 4.1 summarizes the algorithm. The rest of the paper analyzes its complexity. Let n be the input size.
Computing G = G$,W can be done in O(n) time. G is a graph with O(n) edges and vertices. Computing the data
structure for DG,N ′ takes O(n3) time by Theorem 2.1 because N ′ has constant size. Computing G′ takes O(n2) time,
as there are only O(n2) edges. ∇∗S(w) is a regular language that can be represented with a regular expression of

5

e1e1

e2e2
e3e3

e4e4

Edge Label Weight π

e1 d 3 1
e2 m 1 2
e3 d 1 3
e4 d 0

Figure 5.1: The example G in Section 5. The black
vertex is q.

e1e1

e2e2e3e3

e4e4

e5e5

Edge Label Weight
e1 d 2
e2 m 1
e3 d 1
e4 d 0
e5 d 2

Figure 5.2: The example G′ in Section 5. Note the
additional edge e5. The black vertex is q.

length O(|w|). Finding a minimum weight qq-path in G′ with its label in ∇∗S(w) takes O(|w|n2) = O(n3) time by
Theorem 2.2. The minimum weight path have O(n) edges because all elements in ∇∗S(w) has length |w|= O(n).
Hence, the loop is executed O(n) times. Inside each iteration of the loop, we proceed by dynamic programming
to compute output Ae. If PG,N ′(u, v, A) = PG,N ′(u, x , B)PG,N ′(x , v, C), we find π(PG,N ′(u, v, A)) by concatenating
π(PG,N ′(u, x , B)) and π(PG,N ′(x , v, C)). To determine the x , B and C , we query the data structure for DG,N ′ once.
For each distinct PG,N ′(u, v, A), there is only one query. The dynamic programming algorithm queries the data
structure O(n2) times, and each query takes O(1) time by Theorem 2.1. Outputting Ae takes an additional O(|Ae|)
time. Together, the total running time is O(n3 + s).

We have shown the running time of the algorithm is polynomial to the input size and linear to the output size.
It is open if the output size is bounded by a polynomial of the input size.

5 An example
Consider the following input for the problem. We have W = {w1, w2, w3}, where w1 = d, w2 = m and w3 = dd.
The cost is defined as $(w1) = 3 and $(w2) = $(w3) = 1. We are interested in finding the minimum cost solution
to w= ddd. First, we compute G = G$,W , as shown in Figure 5.1. Now, we compute G′. Note this would update
the edge weight and also create an new edge. See Figure 5.2. As a demonstration, we consider how edge e1 is
created. The label of e1 is d. The weight is the minimum over all paths in G that goes from q to itself, and with
label in ∇∗R(d). In particular, the path e3e4e2 in G has label ddm, which is the same as d. It has weight 2, and no
other path with label in ∇∗R(d) has smaller weight. Let the vertex incident to e5 be v. e5 was created because there
is a vv-path e4e2e3 in G with label dmd. Finally, we compute a qq-path in G′ with minimum weight and has label
ddd. One possible minimum weight path in G′ is e1e3e4. It reflects a path in G, namely P = e3e4e2e3e4. The output
corresponds to this path is π(P), which is 3,2, 3. Thus, the desired solution is w= w3w2w3.

Acknowledgement
The authors would like to thank Alan J. Cain for helpful pointers to monadic rewriting systems.

References
[1] 三姑六婆 -親戚稱呼計算機. https://www.relativescalc.com/. Accessed: 2017-09-04.

[2] 计算器-小米应用商店. http://app.mi.com/details?id=com.miui.calculator. Accessed: 2017-09-04.

6

http://www-groups.mcs.st-andrews.ac.uk/~alanc/
https://www.relativescalc.com/
http://app.mi.com/details?id=com.miui.calculator

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, New York, NY, USA, 1998.

[4] C. Barrett, R. Jacob, and M. Marathe. Formal-language-constrained path problems. SIAM J. Comput.,
30(3):809–837, May 2000.

[5] R. V. Book and F. Otto. String-Rewriting Systems (Monographs in Computer Science). Springer, 1993.

[6] J. P. Boyd. The algebra of group kinship. Journal of Mathematical Psychology, 6(1):139 – 167, 1969.

[7] J. M. Howie. Fundamentals of Semigroup Theory (London Mathematical Society Monographs). Clarendon
Press, 1996.

[8] D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal Algebras, pages 342–376. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1983.

[9] L. Morgan. Systems of Consanguinity and Affinity of the Human Family. Bison book. University of Nebraska
Press, 1870.

[10] G. Murdock. Social Structure. A Free press paperback: Sociology. Macmillan Company, 1949.

[11] A. Myasnikov, A. Nikolaev, and A. Ushakov. Knapsack problems in groups. Mathematics of Computation,
84(292):987–1016, 2015.

[12] D. W. Read, J. Atkins, I. R. Buchler, M. Fischer, G. D. Meur, E. Lally, B. Holbrook, D. B. Kronenfeld, H. W.
Scheffler, S. Seidman, and W. D. Wilder. An algebraic account of the american kinship terminology [and
comments and reply]. Current Anthropology, 25(4):417–449, 1984.

[13] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition, 2012.

[14] A. F. C. Wallace and J. Atkins. The meaning of kinship terms. American Anthropologist, 62(1):58–80, 1960.

A Proof of Theorem 3.1
A length non-increasing rewriting system T is convergent if T is locally confluent [3]. That is, if a→T b and a→T c,
then there exists some z such that b

∗
−→T z and c

∗
−→T z. We consider all minimal substrings with overlapping rules,

and show it is locally confluent.

Overlapping rules both in R1

Case 1 For a word a1a2a3a4 where R1 rules applies to both a1a2a3 and a2a3a4.

• (a1a2a3)a4→R1
a3a4

• a1(a2a3a4)→R1
a1a4

Resulting pairs both have sign string +- (or -+). Applying a rule in S to one of the two strings results the same
word.

Case 2 For a word a1a2a3a4a5 where R1 rules applies to a1a2a3 and a3a4a5.

• (a1a2a3)a4a5→R1
a3a4a5→R1

a5

• a1a2(a3a4a5)→R1
a1a4a5→R1

a5

Overlapping rules both in R2 It is impossible for both overlapping rules to be in R2, since there is no sign string
of length ≤ 5 where --+ appears twice.

Overlapping rules both in S

Case 3 For a word a1a2a3 where S rules apply to both a1a2 and a2a3.

• (a1a2)a3→S a′1(a2a3)→S a′1a′2a3

• a1(a2a3)→S (a1a′2)a3→S a′1a′2a3

7

Overlapping rules in R1 and R2

Case 4 For a word a1a2a3a4 where a R1 rule applies to a2a3a4 and a R2 rule applies to a1a2a3.

• a1(a2a3a4)→R2
a1a4

• (a1a2a3)a4→R1
a1a4

Case 5 For a word a1a2a3a4a5 where a R1 rule applies to a1a2a3 and a R2 rule applies to a3a4a5. (so sign string
-+--+)

• (a1a2a3)a4a5→R1
a3a4a5→R2

a3

• a1a2(a3a4a5)→R2
a1a2a3→R1

a3

Case 6 For a word a1a2a3a4a5 where a R1 rule applies to a3a4a5 and a R2 rule applies to a1a2a3. (so sign string
--+-+)

• (a1a2a3)a4a5→R2
a1a4a5

• a1a2(a3a4a5)→R1
a1a2a5

We can apply a S rule to either a2a5 or a4a5 to obtain the same word.

Overlapping rules in R1 and S

Case 7 For a word a1a2a3 where a R1 rule applies to a1a2a3. A S rule applies to a1a2 or a2a3.

• a1a2a3→R1
a3

• (a1a2)a3→S a′1a2a3→R1
a3

• a1(a2a3)→S a1a′2a3→R1
a3

Case 8 For a word a1a2a3a4 where a R1 rule applies to a1a2a3 and a S rule applies to a3a4.

• (a1a2a3)a4→R1
a3a4→S a′3a4

• a1a2(a3a4)→S (a1a2a′3)a4→R1
a′3a4

Case 9 For a word a1a2a3a4 where a R1 rule applies to a2a3a4 and a S rule applies to a1a2.

• a1(a2a3a4)→R1
a1a4→S a′1a4

• (a1a2)a3a4→S a′1(a2a3a4)→R1
a′1a4

Overlapping rules in R2 and S

Case 10 For a word a1a2a3a4 with sign string +--+, a R2 rule applies to a2a3a4 and a S rule applies to a1a2.

• a1(a2a3a4)→R2
a1a2→S a′1a2

• (a1a2)a3a4→S a′1(a2a3a4)→R2
a′1a2

Case 11 For a word a1a2a3a4 with sign string --+-, a R2 rule applies to a1a2a3 and a S rule applies to a3a4.

• (a1a2a3)a4→R2
a1a4

• a1a2(a3a4)→S (a1a2a′3)a4→R2
a1a4

Case 12 For a word a1a2a3 with sign string --+, a R2 rule applies to a1a2a3 and a S rule applies to a2a3.

• a1a2a3→R2
a1

• a1(a2a3)→S a1a′2a3→R2
a1

8

	Introduction
	Preliminaries
	Rewriting systems
	The kinship monoid and problem definition
	Labeled graphs and algorithms

	Rewriting system for Kinship monoid
	A polynomial time algorithm for shortest kinship description problem
	The algorithm

	An example
	Proof of Theorem 3.1

