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Abstract

Karger used spanning tree packings [20] to derive a near linear-time randomized algorithm for the
global minimum cut problem as well as a bound on the number of approximate minimum cuts. This is a
different approach from his well-known random contraction algorithm [19, 21]. Thorup developed a fast
deterministic algorithm for the minimum k-Cut problem via greedy recursive tree packings [37].

In this paper we revisit properties of an LP relaxation for k-Cut proposed by Naor and Rabani [29],
and analyzed in [4]. We show that the dual of the LP yields a tree packing, that when combined with
an upper bound on the integrality gap for the LP, easily and transparently extends Karger’s analysis for
mincut to the k-Cut problem. In addition to the simplicity of the algorithm and its analysis, this allows us
to improve the running time of Thorup’s algorithm by a factor of n. We also improve the bound on the
number of α-approximate k-cuts1. Second, we give a simple proof that the integrality gap of the LP is
2(1− 1/n). Third, we show that an optimum solution to the LP relaxation, for all values of k, is fully
determined by the principal sequence of partitions of the input graph. This allows us to relate the LP
relaxation to the Lagrangean relaxation approach of Barahona [2] and Ravi and Sinha [32]; it also shows
that the ideal tree packing considered by Thorup gives an optimum dual solution to the LP.

1 Introduction
The global minimum cut problem in graphs (MinCut) is well-known and extensively studied. Given an
undirected graph G = (V, E) with non-negative edge capacities c : E→ R+, the goal is to remove a minimum
capacity set of edges such that the residual graph has at least two connected components. When all capacities
are one, the mincut of a graph is its global edge-connectivity. The k-Cut problem is a natural generalization.
Given a graph G = (V, E) and an integer k ≥ 2, the goal is to remove a minimum capacity set of edges such
that the residual graph has at least k connected components. MinCut and k-Cut have been extensively studied
in the literature. Initial algorithms for MinCut were based on a reduction to the s-t-mincut problem. However,
it was realized later on that it can be solved more efficiently and directly. Currently the best deterministic
algorithm for MinCut runs in O(mn+ n2 log n) time [35] and is based on the maximum adjacency ordering
approach of Nagamochi and Ibaraki [27]. On the other hand, there is a near-linear time Monte Carlo
randomized algorithm due to Karger [20]. Bridging the gap between the running times for the deterministic
and randomized algorithms is a major open problem. In recent work [17, 22] obtained near-linear time
deterministic algorithms for simple unweighted graphs.

The k-Cut problem is NP-Hard if k is part of the input [12], however, there is a polynomial-time algorithm
for any fixed k. Such an algorithm was first devised by Goldschmidt and Hochbaum [12], and subsequently
there have been several different algorithms improving the run-time (see [18] and references therein). The
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randomized algorithm of Karger and Stein [21] runs in Õ(n2(k−1)) time and outputs the optimum cut with
high probability. The fastest deterministic algorithm, due to Thorup [37], runs in Õ(mn2k−2) time [37].
Recent work of Gupta, Lee and Li [13] obtains a faster run-time of Õ(kO(k)n(2ω/3+o(1))k) if the graph has
small integer weights, where ω is the exponent in the run-time of matrix multiplication. It is also known that
k-Cut is W [1]-hard when parameterized by k [8]; that is, we do not expect an algorithm with a run-time of
f (k)nO(1). Several polynomial-time 2-approximation algorithms are known for k-Cut even when k is part of
the input; the first one is due to Saran and Vazirani and their algorithm is based on repeated minimum-cut
computations and yields a (2− 2/k)-approximation [33]; the same bound can be achieved by removing the
(k − 1) smallest weight edges in a Gomory-Hu tree of the graph [33]. Nagamochi and Kamidoi showed
that using the concept of extreme sets, a (2− 2/k)-approximation can be found even faster [28]. Naor and
Rabani developed an LP relaxation for k-Cut [29] and this yields a 2(1− 1/n)-approximation [4]. Ravi and
Sinha [32] obtained another 2(1− 1/n)-approximation via a Lagrangean relaxation approach which was
also considered independently by Barahona [2]. Quanrud obtained a deterministic (2+ ε)-approximation in
near-linear time via the LP relaxation [31]. A factor of 2, for large k, is the best possible approximation under
the Small Set Expansion hypothesis [26]. Recent work has obtained a 1.81 approximation in 2O(k2)nO(1)

time [14]; whether a PTAS can be obtained in f (k)poly(n) time is an interesting open problem.

Motivation and contributions: The initial motivation for this work was to understand and simplify Thorup’s
tree packing based algorithm for k-Cut. Karger’s near-linear time algorithm and analysis for the MinCut
problem [20] is based on the well-known theorem of Tutte and Nash-Williams (on the min-max relation for
the maximum number of edge-disjoint trees in a graph). It is simple and elegant; the main complexity is in
the improved running time which is achieved via a non-trivial dynamic programming based algorithm relying
on advanced data structures. Karger also tightened the bound on the number of α-approximate minimum
cuts in a graph via tree packings (originally shown via his random contraction algorithm). In contrast, the
main structural result in Thorup’s work on k-Cut is much less easy to understand. His proof consists of
two parts. He shows that an ideal tree packing obtained via a recursive decomposition of the graph, first
outlined in [36], has the property that any optimum k-cut crosses some tree in the packing at most 2k− 2
times. The second part argues that a greedy tree packing with sufficiently many trees approximates the ideal
tree packing arbitrarily well. The greedy tree packing is closely related to a multiplicative weight update
method for solving a basic tree packing linear program, however, no explicit LP is used in Thorup’s analysis.
Thus, although Thorup’s algorithm is very simple to describe (and implement), the motivation for the tree
packing and the analysis are not very transparent.

In this paper we make several contributions which connect Thorup’s tree packing to the LP relaxation for
k-Cut [29]. We outline the specific contributions below.

• We show that the dual of the LP for k-Cut gives a tree packing and one can use a simple analysis, very
similar to that of Karger, to show that any optimum k-cut crosses some tree in the packing at most
(2k− 3) times. This improves a bound of (2k− 2) that Thorup showed for his tree packing and leads
to a deterministic algorithm with a running time of Õ(mn2k−3) to find an optimum k-cut in a weighted
graph with n nodes and m edges. For weighted graphs this is currently the fastest known deterministic
algorithm. We also obtain an improved bound on the number of α-approximate k-cuts.

• We give a new and simple proof that the integrality gap of the LP for k-Cut is upper bounded by
2(1 − 1/n). We note that the proof claimed in [29] was incorrect and the proof in [4] is indirect
and technical. We also obtain a seemingly new and simple proof of the min-max relation between
maximum fractional tree packing and network strength originally due to Tutte and Nash-Williams.

• We show that the optimum solution of the k-Cut LP, for all values of k, can be completely characterized
by the principal sequence of partitions of the cut function of the given graph. This establishes the
connection between the dual of the LP relaxation and the ideal recursive tree packing considered
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by Thorup. It also shows that the lower bound provided by the LP relaxation is equivalent to the
Lagrangean relaxation lower bound considered by Barahona [2] and Ravi and Sinha [32].

Our results help unify and simplify the different approaches to k-Cut via the LP relaxation and its dual.
Since the main motivation for this paper is to simplify and improve the understanding of the tree packing
approach, we take a leisurely path and reprove some of Karger’s results for the sake of completeness, and to
point out the similarity of our argument for k-Cut to the case of MinCut. Readers familiar with [20] may
wish to skip Section 3.

Other related work: There have been several developments on the k-Cut problem since the publication of
a preliminary version of this paper [13, 14, 16, 24, 31]. Building on a sequence of developments on k-Cut,
Gupta, Lee and Li [15] show an improved analysis of the Karger-Stein algorithm which shows that (i) the
number of minimum k-cuts is n(1+o(1))k and (ii) the running time is n(1+o(1))k. These bounds are essentially
tight modulo the small additive term in the exponent. We refer the reader to these recent papers for more
details.

Computing a minimum k-cut in a hypergraph is also an interesting problem and its complexity was open
until recently. Chandrasekaran, Xu and Yu obtained a randomized polynomial time algorithm for any fixed
k [3]. When k is part of the input, in contrast to the case of graphs, the k-Cut problem in hypergraphs is hard
to approximate to within large factors under the Exponential Time Hypothesis [5, 25].

Organization: Section 2 sets up some basic notation and definitions. Section 3 discusses Karger’s approach
for MinCut via tree packings with some connections to recent developments on approximately solving tree
packings. Section 4 describes the tree packing obtained from the dual of the LP relaxation for k-Cut and
how it can be used to extend Karger’s approach to k-Cut. Section 5 gives a new proof that the LP integrality
gap for k-Cut is 2(1− 1

n). In Section 6 we show that the optimum LP solution for all values of k can be
characterized by a recursive decomposition of the input graph.

2 Preliminaries
We use n and m to denote the number of nodes and edges in a given graph. For a graph G = (V, E), let T(G)
denote the set of spanning trees of G. For a graph G = (V, E) with edge capacities c : E→ R+ the fractional
spanning tree packing number, denoted by τ(G), is the optimum value of a simple linear program shown
in Figure 2.1 whose variables are yT , T ∈ T(G). The LP has an exponential number of variables but is still
polynomial time solvable. There are several ways to see this and efficient strongly combinatorial algorithms
are also known [10]. We also observe that there is an optimum solution to the LP whose support has at most
m trees since the number of non-trivial constraints in the LP is at most m (one per each edge).

max
∑

T∈T(G)

yT

∑

T3e

yT ≤ ce e ∈ E

yT ≥ 0 T ∈ T(G)

Figure 2.1: LP relaxation defining τ(G).

There is a min-max formula for τ(G) which is a special case of the min-max formula for matroid base
packing due to Tutte and Nash-Williams [34]. To state this theorem we introduce some notation. For a
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partition P of the vertex set V let E(P) denote the set of edges that cross the partition (that is, have end points
in two different parts) and let |P| denote the number of parts of P. A k-cut is E(P) for some partition P such
that |P| ≥ k. A cut is a 2-cut. The value of the minimum cut of G is denoted as λ(G). It is not hard to see
that for any partition P of the vertex set V , τ(G) ≤ c(E(P))

|P|−1 since every spanning tree of G contains at least

|P| − 1 edges from E(P). The minimum over all partitions of the quantity, c(E(P))
|P|−1 , is also referred to as the

strength of G (denoted by σ(G)), and turns out to be equal to τ(G).

Theorem 2.1 (Tutte and Nash-Williams) For any undirected edge capacitated graph G,

τ(G) =min
P

c(E(P))
|P| − 1

.

Tutte and Nash-Williams proved the integer packing version of the preceding theorem which is harder;
they showed that the maximum number of edge-disjoint spanning trees in a graph G with integer capacities c
is given by minPb

c(E(P))
|P|−1 c. The theorem is in fact a special case of matroid base packing theorem and can also

be derived via the matroid union theorem of Edmonds; we refer the reader to [34].
A useful and well-known corollary of the preceding theorem is given below.

Corollary 2.2 For any graph G, τ(G)≥ n
2(n−1) ·λ(G).

Proof: Consider the partition P∗ that achieves the minimum in the minmax formula. We have c(E(P)) ≥
|P∗|λ(G)/2 since the capacity of edges leaving each part of P∗ is at least λ(G) and an edge in E(P∗) crosses
exactly two parts. Thus,

τ(G) =
c(E(P∗))
|P∗| − 1

≥
|P∗|λ(G)

2(|P∗| − 1)
≥

n
2(n− 1)

λ(G)

since the ratio |P∗|
|P∗|−1 decreases as |P∗| increases, and |P∗| ≤ n. �

We say that a tree packing y : T(G)→ R+ is (1− ε)-approximate if
∑

T∈T(G) yT ≥ (1− ε)τ(G). Note
that we typically want a compact tree packing that can either be explicitly specified via a small number
of trees or even implicitly via a data structure representing a collection of trees. Approximate spanning
tree packings have been obtained via greedy spanning tree packings which can be viewed as applying the
multiplicative weight update method. Recently [6] obtained the following result.

Theorem 2.3 ( [6]) There is a deterministic algorithm that, given an edge-capacitated undirected graph
on m edges and an ε ∈ (0, 1/2), runs in O(m log3 n/ε2) time and outputs an implicit representation of a
(1− ε)-approximate tree packing.

3 Tree packings and minimum cuts
We review some of Karger’s observations and results connecting tree packings and minimum cuts [20] which
follow relatively easily via Corollary 2.2. In this section, we restrict the definition of a cut to an edge set E(P)
for a partition P= {S, V \ S} with exactly two parts. Hence, we use δ(S) to uniquely identify a cut. However,
as one can see later in Section 4, the results will also hold for the more general definition of a cut, where P

has at least two parts. We rephrase Karger’s results and arguments with a slightly different notation. Given
a spanning tree T and a cut A⊆ E, following Karger, we say that T h-respects A for some integer h ≥ 1 if
|E(T )∩ A| ≤ h.

Karger proved that a constant fraction of trees (in the weighted sense) of an optimum packing 2-respect
any fixed mincut. In fact this holds for a (1− ε)-approximate tree packing for sufficiently small ε. The proof,
as follows, is an easy consequence of Corollary 2.2 and an averaging argument. It is convenient to view a tree
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packing as a probability distribution. Let pT = yT/τ(G). We then have
∑

T pT = 1 for an exact tree packing
and for a (1− ε)-packing we have

∑

T pT ∈ (1− ε, 1]. Let δ(S) be a fixed minimum cut whose capacity is
λ(G). Let `T = |E(T )∩δ(S)| be the number of edges of T that cross S. Let q =

∑

T :`T≤2 pT be the fraction
of trees that 2-respect δ(S). Since each tree crosses S at least once we have,

∑

T

pT`T =
∑

T :`T≤2

pT`T +
∑

T :`T≥3

pT`T ≥ q+ 3(1− ε− q).

Because y is a valid packing,

τ(G)
∑

T

pT`T =
∑

T

yT`T ≤ c(δ(S)) = λ(G).

Putting the two inequalities together and using Corollary 2.2,

3(1− ε)− 2q ≤ λ(G)/τ(G)≤ 2(n− 1)/n

which implies that

q ≥
3
2
(1− ε)− (1− 1/n) =

1
2
+

1
n
−

3ε
2

.

If ε = 0 this implies that at least half the fraction of trees 2-respect any minimum cut. Let q′ be the
fraction of trees that 1-respect a minimum cut. One can do similar calculations as above to conclude that

q′ ≥ 2(1− ε)− 2(1− 1/n)≥ 2(
1
n
− ε).

Thus, q′ > 0 as long as ε < 1/n. In an optimum packing there is always a tree in the support that 1-respects
a mincut. The preceding argument can be generalized in a direct fashion to yield the following useful lemma
on α-approximate cuts.

Lemma 3.1 Let y be a (1− ε)-approximate tree packing. Let δ(S) be an α-approximate minimum cut (i.e.,
c(δ(S))≤ αλ(G)) for some fixed α≥ 1. For a fixed integer h≥ 1, let qh denote the fraction of trees in the
packing y that h-respect δ(S). Then

qh ≥ (1− ε)
�

1+
1
h

�

−
2α
h

�

1−
1
n

�

.

3.1 Number of approximate minimum cuts

Karger showed that the number of α-approximate minimum cuts is at most O(n2α) via his random contraction
algorithm [19]. He improved the bound to O(nb2αc) (for any fixed α) via tree packings in [20]. We review the
latter argument.

For any cut δ(S), we associate with it the subset of edges of T that cross S, E(T )∩ δ(S). In the other
direction, removing a set of edges A⊆ E(T ) induces several components in T − A, which induces a unique
cut in G where any two components of T − A adjacent in T lie on opposite sides of the cut. This gives a
bijection between cuts induced by edge removals in T , and cuts in the graph.

Fix α > 1, and let h= b2αc. Let y be a fixed optimum tree packing supported by some m′ ≤ m trees. For
any α-approximate mincut δ(S), by Lemma 3.1 and some simplification, the fraction of trees in the packing
y that h-respects δ(S) is at least

qh,α ≡
1
b2αc

(1− (2α− b2αc)(1− 1/n)) .
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Observing that qh,α > 0, an easy counting argument for approximate mincuts is the following. For each
α-approximate mincut, there is at least one tree in the (support of the) packing y which crosses it at most h
times. Hence each α-approximate cut can be mapped to a distinct combination of a tree in the packing and at
most h edges from that tree. The total number of these combinations is m′

∑h
i=1

�n−1
i

�

= O(mnh).
We can avoid the factor of m by leveraging the fact that qh,α is a constant for every fixed α. We give

an informal argument here. A tree can h-respect at most 2h+1nh distinct cuts (removing ≤ h edges from T
creates ≤ h+ 1 components and these induce at most 2h+1 cuts), while each α-approximate minimum cut
is h-respected by a (constant) qh,α-fraction of the tree packing; some of these details will be more clear in
Section 4.1. It follows by a packing argument that the total number of α-approximate mincuts is at most
2h+1nh

qh,α
= O

�

nh
�

for any fixed α.

3.2 Algorithm for minimum cut via tree packings
Karger used tree packings to obtain a randomized near linear time algorithm for the global minimum cut.
The algorithm is based on combining the following two steps.

• Given a graph G there is a randomized algorithm that outputs O(log n) trees in Õ(m) time such that
with high probability there is a global minimum cut that 2-respects one of the trees in the packing.

• There is a deterministic algorithm that given a graph G and a spanning tree T , in Õ(m) time finds
the cut of minimum capacity in G that 2-respects T . This is based on a clever dynamic programming
algorithm that utilizes dynamic tree data structures.

Only the first step of the algorithm is randomized. Karger solves the first step as follows. Given a
capacitated graph G and an ε > 0, he sparsifies the graph G to obtain an unweighted skeleton graph H via
random sampling such that (i) H has O(n log n/ε2) edges (ii) λ(H) = Θ(log n/ε2) and (iii) a minimum cut
of G corresponds to a (1+ε)-approximate minimum cut of H in that the cuts induce the same vertex partition.
Karger then uses greedy tree packing in H to obtain a (1− ε′)-tree packing in H with O(log n/ε′2) trees,
and via Corollary 2.2 argues that one of the trees in the packing 2-respects a mincut of G; here ε and ε′ are
chosen to be sufficiently small but fixed constants.

We observe that Theorem 2.3 can be used in place of the sparsification step of Karger. The deterministic
algorithm implied by the theorem can be used to find an implicit (1− ε)-approximate tree packing in near
linear time for any fixed ε > 0. For sufficiently small but fixed ε, a constant fraction of the trees in the tree
packing 2-respect any fixed minimum cut. Thus, if we sample a tree T from the tree packing, and then apply
Karger’s deterministic algorithm for finding the smallest cut that 2-respects T , we can find a minimum cut
with constant probability. We can repeat the sampling Θ(log n) times to obtain a high probability bound.

Karger raised the following question in his paper. Can the dynamic programming algorithm for finding
the minimum cut that 2-respects a tree be made dynamic? That is, suppose T is altered via edge swaps to
yield a tree T ′ = T − e+ e′ where e ∈ E(T ) is removed and replaced by a new edge e′. Can the solution for
T be updated quickly to obtain a solution for T ′? Note that G is static, only the tree is changing. The tree
packing from Theorem 2.3 finds an implicit packing via Õ(m) edge swap operations from a starting tree T0.
Suppose there is a dynamic version of Karger’s dynamic program that handles updates to the tree in amortized
g(n) time per update. This would yield a deterministic algorithm for the global mincut with a total time of
Õ(mg(n)). We note that the best deterministic algorithm for capacitated graphs is O(mn+ n2 log n) [35].
This would be improved by any g(n) = o(n).

4 Tree packings for k-Cut via the LP relaxation
In this section we consider the k-Cut problem. Thorup [36] constructed a probability distribution over
spanning trees which were obtained via a recursive greedy tree packing and showed that there is a tree T in
the support of the distribution such that a minimum weight k-cut contains at most 2(k− 1) edges of T . He
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min
∑

e∈E

ce xe

s.t.
∑

e∈T

xe ≥ k− 1 for all T ∈ T(G)

xe ≤ 1 for all e ∈ E

xe ≥ 0 for all e ∈ E

Figure 4.1: An LP relaxation for the k-Cut problem from [29].

then showed that greedy tree packing with O(mk3 log n) trees closely approximates the ideal distribution.
With this approach, he derived the currently fastest known deterministic algorithm to find the minimum k-Cut
in Õ(mn2k−2) time. This is only slightly slower than the randomized Monte Carlo algorithm of Karger and
Stein [21] whose algorithm runs in Õ(n2k−2) time. Thorup’s algorithm is fairly simple. However, the proofs
are somewhat complex since they rely on the recursive tree packing and its subtle properties. Arguing that
the greedy tree packing approximates the recursive tree packing is also technical.

Here we consider a different tree packing for k-Cut that arises from the LP relaxation for k-Cut considered
by Naor and Rabani [29]. This LP relaxation is shown in Figure 4.1. The variables are xe ∈ [0,1], e ∈ E
which indicate whether an edge e is cut or not. There is a constraint for each spanning tree T ∈ T(G); at least
k− 1 edges from T need to be chosen in a valid k-cut. We note that for k > 2 the upper bound constraint
xe ≤ 1 is necessary.

The dual of the LP is given in Figure 4.2. Naor and Rabani claimed an integrality gap of 2 for the k-Cut
LP. Their proof was incomplete and a correct proof was given in [4] in the context of a more general problem
called the Steiner k-Cut problem. Let λk(G) denote the minimum k-cut capacity in G.

Theorem 4.1 ( [4]) The worst case integrality gap of the LP for k-Cut in Figure 4.1 is 2(1− 1/n).

Corollary 4.2 Let (y, z) be an optimum solution for the dual LP for k-Cut shown in Figure 4.2. Then

(k− 1)
∑

T

yT ≥
nλk(G)
2(n− 1)

+ z(E).

Note that Corollary 2.2 is a special case of the preceding corollary.

Remark We note that the LP relaxation in Figure 4.1 assumes that G is connected. This is easy to ensure by
adding dummy edges of zero cost to make G connected. However, it is useful to consider the general case
when the number of connected components in G is h where we assume for simplicity that h< k (if h≥ k the
problem is trivial). In this case we need to consider the maximal forests in G, each of which has exactly n−h
edges; to avoid notational overload we use T(G) to denote the set of maximal forests of G. The LP constraint
now changes to

∑

e∈T

xe ≥ k− h T ∈ T(G).

Tree packing interpretation of the dual LP: The dual LP has two types of variables. For each edge e there
is a variable ze and for each spanning tree T there is a variable yT . The dual seeks to add capacity z : E→ R+
to the original capacities c, and then find a maximum tree packing y : T(G)→ R+ within the augmented
capacities c + z. The objective is (k− 1)

∑

T yT −
∑

e∈E ze. Note that for k = 2, there is an optimum solution
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max (k− 1)
∑

T∈T(G)

yT −
∑

e∈E

ze

s.t.
∑

T3e

yT ≤ ce + ze for all e ∈ E

yT ≥ 0 for all T ∈ T(G)

Figure 4.2: Dual of the LP relaxation from Figure 4.1.

with z = 0; this can be seen by the fact that for k = 2 the primal LP can omit the constraints xe ≤ 1 for e ∈ E.
For k > 2 it may be advantageous to add capacity to some bottleneck edges (say from a minimum cut) to
increase the tree packing value, which is multiplied by (k− 1).

Our goal is to show that one can transparently carry over the arguments for global minimum cut via
tree packings to the k-Cut setting via (optimum) solutions y, z to the dual LP. Theorem 4.1 plays the role of
Corollary 2.2. The key lemma below is analogous to Lemma 3.1.

Lemma 4.3 Let y, z be an optimum solution to the dual LP for k-Cut shown in Figure 4.2. Let E′ ⊆ E be
any subset of edges such that c(E′)≤ αλk(G) for some α≥ 1. For each tree T , let `T = |E′ ∩ E(T )| denote
the number of edges in both T and E′. For an integer h≥ (k−1), let qh denote the fraction of the trees in the
packing induced by y, z that contain at most h edges from E′. Then

qh ≥ 1−
2α(k− 1)(1− 1

n)

h+ 1
.

Proof: Let τk(G) denote
∑

T yT and let pT = yT/τk(G). Then qh =
∑

T :`T≤h pT .
∑

T

pT`T =
∑

T :`T≤h

pT`T +
∑

T :`T≥(h+1)

pT`T ≥ (h+ 1)(1− qh).

Because y is a valid tree packing in capacities c + z,

τk(G)
∑

T

pT`T =
∑

T

yT`T ≤ c(E′) + z(E′)≤ αλk(G) + z(E′)≤ α · (λk(G) + z(E)).

The last inequality uses the fact that α≥ 1 and z ≥ 0. Putting the preceding inequalities together, we have

(h+ 1)(1− qh)≤
1

τk(G)
α(λk(G) + z(E)).

We rearrange and simplify the inequality in Corollary 4.2 as

2
�

1−
1
n

�

(k− 1)
∑

T

yT ≥ λk(G) + 2(1−
1
n
)z(E)≥ λk(G) + z(E).

Plugging this inequality into the preceding one yields

(h+ 1)(1− qh)≤ 2α(k− 1)(1−
1
n
),

which implies that

qh ≥ 1−
2α(k− 1)(1− 1

n)

h+ 1
.

�
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Remark Lemma 4.3 does not require E′ to be a k-cut. Ultimately we will only apply Lemma 4.3 to k-cuts.

Corollary 4.4 Let (y, z) be an optimum solution to the dual LP. For every optimum k-cut A⊆ E there is a
tree T in the support of y such that |E(T )∩ A| ≤ 2k− 3.

Proof: We apply Lemma 4.3 with h= 2k− 3 and α= 1 and observe that qh > 0, which implies the desired
statement. �

Corollary 4.5 Let (y, z) be a (1 − ε)-approximate solution to the dual LP where ε < 1
2k−1 . For every

optimum k-cut A⊆ E there is a tree T in the support of y such that |E(T )∩ A| ≤ 2k− 2.

Proof: Let qh be defined as in Lemma 4.3. If (y, z) is a (1− ε)-approximate solution to the dual LP, we
would have

(k− 1)
∑

T

yT ≥ (1− ε)
nλk(G)
2(n− 1)

+ z(E)≥ (1− ε)
λk(G)

2
+ z(E) (1)

in place of Corollary 4.2.
Examining the proof of Lemma 4.3, we see that optimality of (y, z) is not used in the proof except when

invoking Corollary 4.2. Repeating the proof of Lemma 4.3, except using (1) instead of Corollary 4.2 and
setting α= 1, we obtain the bound

qh ≥ 1−
2(k− 1)

(h+ 1)(1− ε)
.

We observe that qh > 0 for h= 2k− 2 and ε < 1
2k−1 . �

4.1 Number of approximate k-cuts
We now prove the following theorem.

Theorem 4.6 Let G = (V, E) be an undirected edge-weighted graph and let k be a fixed integer. For α≥ 1,
the number of α-approximate minimum k-cuts is O(nb2α(k−1)c).

Proof: Let y be an optimum solution to the dual LP for k-Cut. Let h= b2α(k− 1)c and let

qh = 1−
2α(k− 1)

�

1− 1
n

�

h+ 1
> 0.

Fix a k-cut consisting of a set of edges A such that c(A)≤ αλk(G). From Lemma 4.3, at least a qh-weighted
fraction of trees in the packing y have the property that at most h edges of A are in the tree.

For a given tree T , consider the number of distinct k-cuts that contain h or fewer edges in T . There are at
most nh subsets of the tree’s edges where each subset has cardinality at most h. Each such subset induces
at most kh+1 distinct partitions of the vertex set into k parts. Thus there are at most kh+1nh distinct k-cuts
containing h or fewer edges from T .

If there are (strictly) more than kh+1nh/qh distinct cuts with weight at most αλk(G), then by the
pigeonhole principle there exists a tree T in the packing that induces strictly more than kh+1nh different
cuts with h or fewer edges — a contradiction. Thus the total number of k-cuts with cost at most αλk(G) is
O(nb2α(k−1)c) where the asymptotic notation hides a constant that depends on α and k. �

Remark As mentioned earlier, Gupta, Lee and Li [15] have recently shown that the number of minimum
k-cuts is at most n1+o(1))k. It is unclear whether their approach yields an improvement for α-approximate
k-cuts for all values of α > 1 although it seems likely that it would give an improvement for α close to 1.
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4.2 Enumerating all minimum k-cuts
We briefly describe how to enumerate all k-cuts via Lemma 4.3. The argument is basically the same as that
of Karger and Thorup. First, we compute an optimum solution (y∗, z∗) to the dual LP. We can do this via
the Ellipsoid method or other ways. Let β(n, m) be the running time to find (y∗, z∗). Moreover, we find a
basic feasible solution to the dual LP such that the support of y has at most m distinct trees. Now Lemma 4.3
guarantees that for every minimum k-cut A⊆ E there is a tree T such that yT > 0 and T (2k− 3)-respects
A. Thus, to enumerate all minimum k-cuts the following procedure suffices. For each of the trees T in the
optimum packing we enumerate all k-cuts induced by removing h= 2k− 3 edges from T . With appropriate
care and data structures (see [20] and [36]) this can be done for a single tree T in Õ(n2k−3 +m) time. The
total time over all m trees in the support of y is Õ(mn2k−3) for k > 2. This gives the following theorem.

Theorem 4.7 For k > 2 all the minimum k-cuts of a graph with n nodes and m edges can be computed in
time Õ(mn2k−3 + β(m, n)) time where β(m, n) is the time to find an optimum solution to the LP for k-cut.

We observe that Thorup’s algorithm [36] runs in time Õ(mn2k−2). Thorup uses greedy tree packing in
place of solving the LP. The optimality of the LP solution was crucial in using the bound of 2k− 3 instead of
2k− 2. Thus, even though we obtain a slightly faster algorithm than Thorup, we need to find an optimum
solution to the LP which can be done via the Ellipsoid method. The Ellipsoid method is not quite practical.
Below we discuss a different approach.

In recent work Quanrud showed that a (1− ε)-approximate solution to the dual LP can be computed in
near-linear time. We state his theorem below.

Theorem 4.8 ( [31]) There is an algorithm that computes a (1− ε)-approximate solution (y, z) the dual LP
in O(m log3 n/ε2) time.

We observe that the preceding theorem guarantees O(m log3 n/ε2) trees in the support of y and also
implicity stores them in O(m log3 n/ε2) space. If we choose ε < 1/(2k−1) then, via Corollary 4.5, for every
minimum k-cut A⊆ E there is a tree T in the support of y that (2k−2)-respects A. This leads to an algorithm
that in Õ(mn2k−2) time enumerates all minimum k-cuts and recovers Thorup’s running time. However, we
note that the trees generated by the algorithm in the preceding theorem are implicit, and can be stored in
small space. It may be possible to use this additional structure to match or improve the run-time achieved by
Theorem 4.7.

Remark For unweighted graphs with Õ( m
n−k

1
ε2 ) trees [31] guarantees a (1−ε)-approximation. This improves

the running time to Õ(mn2k−3) for unweighted graphs.

We briefly discuss a potential approach to speed up the computation further. Recall that Karger describes
an algorithm that given a spanning tree T of a graph G finds the minimum cut that 2-respects T in Õ(m)
time, speeding up the easier Õ(n2) time algorithm. We can leverage this as follows. In the case of k > 2 we
are given T and G and wish to find the minimum k-cut induced by the removal of at most t edges where
t is either 2k − 3 or 2k − 2 depending on the tree packing we use. Suppose A is a set of t − 2 edges of T .
Removing them from T yields a forest with t − 1 components. We can then apply Karger’s algorithm in each
of these components with an appropriate graph. This results in a running time of Õ(mnt−2) per tree rather
than Õ(nt). We can try to build on Karger’s ideas to improve the running time to find the best 3-cut induced
by removing at most 4 edges from T . We could then potentially leverage this for larger values of k.

5 A new proof of the LP integrality gap for k-Cut
The proof of Theorem 4.1 in [4] is based on the primal-dual algorithm and analysis of Agarwal, Klein and
Ravi [1], and Goemans and Williamson [11] for the Steiner tree problem. For this reason the proof is technical
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and indirect. Further, the proof from [4] is described for the Steiner k-cut problem which has additional
complexity. Here we give a different and intuitive proof for k-Cut. Unlike the proof in [4], the proof here
relies on optimality properties of the LP solution and hence is less useful algorithmically. We note that [31]
uses Theorem 4.8 and a fast implementation of the algorithmic proof in [4] to obtain a near-linear time
(2+ ε)-approximation for k-Cut.

Let G = (V, E) be a graph with non-negative edge capacities ce, e ∈ E. We let deg(v) =
∑

e∈δ(v) ce denote
the capacitated degree of node v. We will assume without loss of generality that V = {v1, v2, . . . , vn} and that
the nodes are sorted in increasing order of degrees, that is, deg(v1)≤ deg(v2)≤ . . .≤ deg(vn). We observe
that deg(v1) + deg(v2) + . . .+ deg(vk−1) is an upper bound on the value of an optimum k-Cut; removing all
the edges incident to v1, v2, . . . , vk−1 gives a feasible solution in which the components are the k− 1 isolated
vertices {v1}, {v2}, . . . , {vk−1}, and a component consisting of the remaining nodes of the graph.

The key lemma is the following which proves the integrality gap in a special case.

Lemma 5.1 Let G be a connected graph and let x∗ be an optimum solution to the k-Cut LP such that
x∗e ∈ (0,1) for each e ∈ E (in other words x∗ is fully fractional). Then

∑k−1
i=1 deg(vi)≤ 2(1− 1/n)

∑

e ce x∗e .

Proof: Since G is connected, the LP shown in Figure 4.1 is a valid relaxation and we can consider its dual.
Let (y∗, z∗) be any fixed optimum solution to the dual LP. Complementary slackness gives the following two
properties:

• z∗e = 0 for each e ∈ E, for if z∗e > 0 we would have x∗e = 1.

• for each e ∈ E,
∑

T3e y∗T = ce since x∗e > 0.

From the second property above, and the fact that each spanning tree has exactly (n− 1) edges, we conclude
that

(n− 1)
∑

T

y∗T =
∑

e∈E

ce. (2)

Since the degrees are sorted,

k−1
∑

i=1

deg(vi)≤
k− 1

n

n
∑

i=1

deg(vi) = 2
k− 1

n

∑

e

ce. (3)

Putting the two preceding inequalities together,

k−1
∑

i=1

deg(vi)≤ 2(1−
1
n
)(k− 1)

∑

T

y∗T = 2(1−
1
n
)
∑

e

ce x∗e ,

where, the last equality is based on strong duality and the fact that z∗ = 0. �

The preceding lemma can be easily generalized to the case when G has h connected components following
the remark in the preceding section on the k-Cut LP. This gives us the following.

Corollary 5.2 Let G be a graph with h connected components and let x∗ be an optimum solution to the
k-Cut LP such that x∗e ∈ (0, 1) for each e ∈ E. Then

∑k−h
i=1 deg(vi)≤ 2(1− 1/n)

∑

e ce x∗e .

Now we consider the general case when the optimum solution x∗ to the k-Cut LP is not necessarily fully
fractional as needed in Lemma 5.1. The following claim is easy.

Claim 5.1 Let x∗e = 0 where e = uv. Let G′ be the graph obtained from G by contracting u and v into a
single node. Then there is a feasible solution x ′ to the k-Cut LP in G′ of the same cost as that of x∗. Moreover
a feasible k-cut in G′ induces a feasible k-cut in G of the same cost.
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Using the preceding claim we can assume without loss of generality that x∗e > 0 for each e ∈ E. Let
F = {e ∈ E | x∗e = 1}. Since the LP solution x∗ paid for the full cost of the edges in F , we can recurse on
G′ = G − F and the fractional solution x ′ obtained by restricting x∗ to E \ F . If G′ is connected then x ′ is an
optimum solution to the k-Cut LP for G′, and is fully fractional, and we can apply Lemma 5.1. However,
G′ can be disconnected. Let h be the number of connected components in G′. If h ≥ k we are done since
F is a feasible k-cut and c(F) ≤

∑

e ce x∗e . The interesting case is when 2 ≤ h < k. In this case we apply
Corollary 5.2 based on the following claim which is intuitive and whose formal proof we omit.

Claim 5.2 Let x ′ be the restriction of x∗ to E\F . Then for any maximal forest T in G′ we have
∑

e∈T x ′(e)≥
k− h. Moreover, x ′ is an optimum solution to the k-Cut LP for G′.

From Corollary 5.2 we can find E′ ⊆ E \ F such that G′ − E′ induces a k-cut in G′ such that

c(E′)≤ 2
�

1−
1
n

�

∑

e∈E\F

ce x ′e = 2
�

1−
1
n

�

∑

e∈E\F

ce x∗e .

Therefore F ∪ E′ is a k-cut in G and we have that

c(F ∪ E′) = c(F) + c(E′)≤
∑

e∈F

ce x∗e + 2(1−
1
n
)
∑

e∈E\F

ce x∗e ≤ 2(1−
1
n
)
∑

e∈E

ce x∗e .

This finishes the proof. Note that the proof also gives a very simple rounding algorithm assuming we
have an optimum solution x∗ for the LP. Contract all edges with x∗e = 0, remove all edges e with x∗e = 1, and
use Lemma 5.1 in the residual graph to find the (k− h) smallest degrees vertices.

An LP-based proof of Theorem 2.1: The preceding proof idea also yields a proof of Theorem 2.1, which
we sketch here. Recall that τ(G) is the optimum solution value to the tree packing LP, which corresponds
to the dual of the k-Cut LP when k = 2. We had already observed that τ(G) is at most the strength of the
graph. Here we will prove equality. When k = 2, as we remarked, the LP does not require the upper bound
constraints x(e)≤ 1 which implies that the dual tree packing LP does not have the z variables. Following
Lemma 5.1 we consider a fully fractional optimum solution x∗ to the k-Cut LP with k = 2 and an optimum
dual solution y∗ to the dual tree packing LP. We have

(n− 1)
∑

T

y∗T = (n− 1)τ(G) =
∑

e∈E

ce.

Consider the partition P consisting of all the singleton vertices; all edges cross this partition, hence c(P) =
∑

e ce and |P| = n. Since τ(G) =
∑

e ce
n−1 =

c(P)
|P|−1 it must be the case that

∑

e ce
n−1 is the network strength which

equals the tree packing value. When x∗ is not fully fractional we can contract edges with x∗e = 0 and apply
the preceding argument. A similar argument can be used to prove the corresponding min-max relation for the
fractional packing of bases of a matroid.

6 Characterizing the optimum LP solution
We have seen that the dual of the LP relaxation for k-Cut yields a tree packing that can be used in place of
Thorup’s recursive tree packing. In this section we show that the two are the same by characterizing the
optimum LP solution for a given graph through a recursive partitioning procedure. This yields a nested
sequence of partitions of the vertex set of the graph. This sequence is called the principal sequence of
partitions of a graph and is better understood in the more general context of submodular functions [30].
We refer the reader to Fujishige’s article for more on this topic [9], and to [7, 23] for algorithmic aspects
in the setting of graphs. We also connect the LP relaxation with the Lagrangean relaxation approach for
k-Cut considered by Barahona [2] and Ravi and Sinha [32]. Their approach is also built upon the principal
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sequence of partitions. In order to keep the discussion simple we mainly follow the notation and approach
of [32].

Given G = (V, E) and an edge set A⊆ E let κ(A) denote the number of connected components in G − A.
Recall that the strength of a capacitated graph G, denoted by σ(G) is defined as minA⊆E

c(A)
κ(A)−1 . The k-Cut

problem can be phrased as minA:κ(A)≥k c(A). The constraint that κ(A) ≥ k is not straightforward to work
with although κ(A) is a supermodular set function over the ground set E. A Lagrangean relaxation approach
was considered in [2, 32]. To set this up we define, for any fixed edge set A, a function gA : R+ → R as
gA(b) = c(A)−b(κ(A)−1). We then obtain the function g : R+→ Rwhere g(b) =minA⊆E c(A)−b(κ(A)−1).
The quantity g(b) is the attack value of the graph for parameter b and was considered by Cunningham [7] in
his algorithm to compute the strength of the graph. (Note that g(b) for any fixed value of b can be computed
in polynomial-time via submodular function minimization). Then, as noted in [2, 32],

min
A:κ(A)≥k

c(A)≥max
b≥0

min
A⊆E

c(A) + b(k−κ(A)) =max
b≥0

g(b) + b(k− 1).

Consider the function g ′ : R+ → R where g ′(b) = g(b) + b(k − 1). From the preceding discussion, for
any b ≥ 0, g ′(b) is a lower bound on the minimum k-Cut value. [32] describes structural properties of the
function g, several of which are explicit or implicit in [7]. We state them below.

• The functions g and g ′ are continuous, concave and piecewise linear and have no more than n− 1
breakpoints. The function g is non-increasing in b.

• Under a non-degeneracy assumption on the graph, which is easy to ensure, the following holds. If b is
not a breakpoint then there is a unique edge set A such that gA(b) = g(b). If b is a breakpoint then
there are exactly two distinct edge sets A, B such that gA(b) = gB(b) = g(b).

• If b0 is a breakpoint of g ′ induced by edge sets A and B with κ(A) > κ(B) then B ⊆ A. In particular
A\ B is contained in some connected component of G′ = (V, E \ B).

• Let b0 be a breakpoint of g ′ induced by edge set A. Then the next breakpoint is induced by the edge
set which is the solution to the strength problem on the smallest strength component of G′ = (V, E \ A).

The above properties show that the breakpoints induce a sequence of partitions of V which are refinements.
Alternatively we consider the sequence of edge sets A1, A2, . . . , obtained by the following algorithm. We will
assume that G is connected. Let A0 = ; and let P0 = {V} which consists of a trivial partition of V induced
by removing A0. Given Ai−1 we obtain Ai ⊇ Ai−1 as follows. Let Gi = (V, E \ Ai−1). If Gi has no edges we
stop. Otherwise let Ci be the minimum strength connected component of Gi and Bi be a maximal minimum
strength edge set of Ci . We define Ai = Ai−1 ∪ Bi , and τi to be the strength of the component Ci . That is,
τi =

c(Ai)−c(Ai−1)
κ(Ai)−κ(Ai−1)

= c(Bi)
κ(Ai)−κ(Ai−1)

. The process stops when Ah = E. Let Pi denote the partition of V induced
by Ai . Note that Pi is obtained from Pi−1 by replacing Ci by a minimum strength partition of Ci , thus Pi is a
refinement of Pi and Ph consists of singleton nodes. Note that Thorup’s ideal tree packing is also based on
the same recursive decomposition. Let the ith breakpoint of g ′ to be bi . It was shown that bi = τi is precisely
the ith breakpoint of the function g ′ [32].

Ravi and Sinha obtained a 2-approximation for k-Cut as follows. Given the preceding decomposition of
G they consider the smallest j such that |P j| ≥ k. If |P j|= k they output it and can argue that it is an optimum
solution. Otherwise they do the following. Recall P j is obtained from P j−1 by replacing the component
C j in G − A j−1 by a minimum strength decomposition of C j . Let k′ = k − |P j−1|. Consider the minimum
strength partition of C j and let H1, H2, . . . , Hr be the connected components of this partion ordered such that
|δC j
(H1)| ≤ |δC j

(H2)| ≤ . . .≤ |δC j
(Hr)|. Note that r ≥ k′. Output the cut A j−1 ∪ (∪k′

`=1δ(H`)).
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6.1 An optimum LP solution from the decomposition
Given k, as before let j be the smallest index such that κ(A j)≥ k. We consider the following solution to the
LP:

• xe = 1 for each e ∈ A j−1.

• xe = α for each e ∈ A j \ A j−1, where α=
k−κ(A j−1)

κ(A j)−κ(A j−1)
.

• xe = 0 for each e ∈ E \ A j .

Lemma 6.1 The solution x is feasible and has objective value

c(A j−1) +αc(B j) = c(A j−1) +
�

k−κ(A j−1)
�

b j .

Proof: Let T be any spanning tree. We want to show that
∑

e∈T xe ≥ k− 1. For each j, let κ j = κ(A j), and
let ` j = |T ∩ A j|. Then T has ` j−1 edges of value xe = 1, and ` j − ` j−1 edges of value α. We have

∑

e∈T

xe = ` j−1 + (` j − ` j−1)α

≥ κ j−1 − 1+ (κ j − κ j−1)α= k− 1,

where we observe that the RHS of the first line is decreasing in both ` j and ` j−1, ` j ≥ κ j − 1, and ` j−1 ≥

κ j−1 − 1. Recall that B j = A j \ A j−1 and that b j = τ j =
c(B j)
κ j−κ j−1

. Therefore αc(B j) = (k − κ j−1)b j . To
calculate the objective value of x , we have

∑

e∈E

ce xe =
∑

e∈A j−1

ce +
∑

e∈A j\A j−1

αce = c(A j−1) +αc(B j) = c(A j−1) + (k−κ j−1)b j .

�

The harder part is captured by the next lemma.

Lemma 6.2 The solution x attains the optimum value to the LP relaxation.

Proof: We prove the claim by constructing a dual solution of equal value. See Figure 4.2 for the dual LP.
Recall the definitions of Pi , Ai , Bi , and Ci from earlier. For each i, let κi = κ(Ai) = |Pi| be the number

of components in the ith partition. Recall that bi is a break point of g ′ and bi = τi is the strength of Ci .
Let Q i be the partition of the component Ci obtained by removing Bi from the graph G[Ci]. An ideal tree
packing, following [37], is a convex combination of trees p : T(G)→ [0,1] s.t.

∑

T pT = 1 with the following
properties.

1. For each i, every tree T supported by p induces a tree in the graph G/Pi obtained by contracting each
component of Pi .

2. For each i and each edge e ∈ Bi ,
∑

T3e pT = ce/bi .

One can interpret p as a probability distribution over spanning trees of G. Every graph has an ideal tree
packing, and can be constructed recursively as follows. If G consists of a single vertex v then there is only
one spanning tree consisting of the vertex v and is picked with probability 1, and the desired properties
are easily satisfied. For the general case we construct the distribution by following the partitioning process.
Recall that G1 = G and B1 ⊆ E is the edge set that induces a minimum strength partitioning of G1, and Q1 is
a partition of C1 = V induced by removing the edge set B1; note that Q1 = P1. Let H be the graph obtained
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by shrinking each part of Q1 = P1 into a single vertex; the edge set of H is B1 and B1 is also a minimum
strength edge partitioning of H and strength value is equal to b1. Consider a maximum tree packing in H
and let yT ≥ 0, T ∈ T(H) denote this packing. We have that

∑

T yT = c(B1)/(|P1| − 1) = b1 and every edge
e ∈ B1 is saturated by the packing: that is

∑

T3e yT = ce. We can obtain a probability distribution p′ over
trees T(H) by setting p′T = yT/b1 (since

∑

T yT = b1). If a tree T is chosen according to this distribution p′

then the probability that an edge e from B1 is in the chosen tree is equal to c(e)/b1. To obtain the desired
probability distribution for the spanning trees of the entire graph G, we independently and recursively pick
one tree T j from each graph G[Vj] where Vj is a part in P1, and concatenate the edges of these chosen trees
with a tree chosen independently from the distribution p′ we described for H . This results in a distribution p
over the spanning trees of G and it can be verified that this is the desired ideal tree packing.

Let p : T(G)→ [0, 1] be an ideal tree packing. Recall that j is the smallest index such that |P j| ≥ k.
To construct our dual solution, we define nonnegative edge potentials ze ≥ 0 and a tree packing y(t) ≥ 0
(packing into c + z) s.t.

yT = b j pT for all T ∈ T(G),

ce + ze =

¨ b j

bi
ce for all e ∈ Bi for i < j

ce otherwise.

We first claim that (y, z) is feasible in the dual LP; that is, y is a feasible tree packing w/r/t the augmented
capacities c + z. Observe that for any edge e, y uses capacity b j times the capacity by p. We need to show
the capacity used by y along any edge e is at most ce + ze. We have two cases.

1. If e ∈ Bi for some i < j, then p uses capacity ce
bi

. In turn, y uses capacity
b j

bi
ce. By choice of ze, we

have ce + ze =
b j

bi
ce, as desired.

2. If e ∈ E \ A j−1, then p uses capacity at most ce
bi

. In turn, y uses capacity at most
b j

bi
ce. But b j ≤ bi , so

the capacity used by y is ≤ ce.

We now analyze the objective value of our dual solution. We first observe that since each tree supported by y
is a tree in G/P j , we have

(k− 1)
∑

T

yT =
k− 1
κ j − 1

∑

T

yT |T ∩ A j|=
k− 1
κ j − 1

∑

e∈A j

∑

T3e

yT

=
k− 1
κ j − 1

b j

∑

i≤ j

1
bi

∑

e∈Bi

ce =
k− 1
κ j − 1

b j

∑

i≤ j

(κi − κi−1)

=
k− 1
κ j − 1

b j(κ j − 1) = (k− 1)b j .

On the other hand, when subtracting out the augmented capacities, we have

∑

e∈E

ze =
∑

i< j

∑

e∈Bi

�

b j

bi
− 1

�

ce = b j

 

∑

i< j

1
bi

∑

e∈Bi

ce

!

−
∑

e∈A j−1

ce

= b j

∑

i< j

(κi − κi−1)−
∑

e∈A j−1

ce = b j

�

κ j−1 − 1
�

−
∑

e∈A j−1

ce

Thus the total objective value of our solution, as a function of b j , is

(k− 1)
∑

T

yT −
∑

e∈E

ze =
�

k− κ j−1

�

b j +
∑

e∈A j−1

ce,

as desired. �
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Remark One can also verify the optimality of (x , y, z) in the proof above by complimentary slackness
conditions. Recall that x and (y, z) satisfy the complimentary slackness conditions if

1. ze > 0 only if xe = 1.

2. yT > 0 only if
∑

e∈T xe = k− 1.

3. xe > 0 only if
∑

T3e ye = ce + ze.

We address these individually.

1. ze > 0 only if e ∈ Bi for some i < j. In this case, e ∈ A j−1 so xe = 1.

2. If yT > 0 then T is in the support of the ideal tree packing. In particular, T contains exactly κ j − 1
edges from A j and κ j − 1 edges from A j−1, so we have

∑

e∈T

xe =
∑

e∈T∩A j−1

1+
∑

e∈T∩(A j\A j−1)

k−κ j−1

κ j −κ j−1
= κ j−1 − 1+ k− κ j−1 = k− 1,

as desired.

3. If xe > 0, then e ∈ Bi for some i ≤ j, so y uses
b j

bi
ce = ce + ze units of capacity of e, as desired.

6.2 Implications of the characterization
We now outline some implications of the preceding characterization of the optimum LP solution.

Ravi and Sinha showed that Lagrangian relaxation lower bound is no weaker than the one provided by
LP relaxation. Here we show that they are equivalent.

Theorem 6.3 The Lagrangian relaxation value is the same as the LP value.

Proof: Let κi = κ(Ai) = |Pi| be the number of components after removing Ai . If κ j = k for some j, then
the Lagrangian relaxation value is the min k-cut value. Hence it matches the LP value. Otherwise, assume
κ j−1 < k < κ j . Since g ′ is concave, continuous and piecewise linear, one can see that the function g ′

maximizes at one of the breakpoints, and it is precisely b j . Indeed, κ j > k, so b j+1(k−κ j)< 0 is a negative
slope. We have

g ′(b j) = c(A j−1)− b j(κ j−1 − 1) + b j(k− 1) = c(A j−1) + (k−κ j−1)b j .

This is precisely the value of the LP in Lemma 6.1. �

The preceding also gives yet another proof that the integrality gap of the LP is 2(1− 1/n).

Second, as we saw, for any value of k, an optimum dual solution to the k-Cut LP can be derived from
the ideal tree packing [36, 37]. The last issue is the connection between greedy tree packing and the dual
LP. At the high-level it is tempting to conjecture that greedy tree packing is essentially approximating the
dual LP via the standard multiplicative weight update (MWU) approach. Proving the conjecture formally
may require a fair amount of technical work and we leave it for future work. We believe that some insights
obtained in [31] could be useful in this context; [31] recasts the LP relaxation for k-Cut into a pure covering
LP, and the dual as a pure packing LP that packs forests instead of trees.
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