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Abstract

We study algorithmic and structural aspects of connectivity in hypergraphs. Given a hypergraph H = (V, E)
with n= V|, m=|E| and p = }.,_, le| the fastest known algorithm to compute a global minimum cut in H runs
in O(np) time for the uncapacitated case, and in O(np + n*logn) time for the capacitated case. We show the
following new results.

e Given an uncapacitated hypergraph H and an integer k we describe an algorithm that runs in O(p) time to
find a (trimmed) subhypergraph H’ with sum of degrees O(kn) that preserves all edge-connectivities up to
k (a k-sparse certificate). This generalizes the corresponding result of Nagamochi and Ibaraki from graphs
to hypergraphs. Using this sparsification we obtain an O(p + An?) time algorithm for computing a global
minimum cut of H where 2 is the minimum cut value.

e We show that a hypercactus representation of all the global minimum cuts of a capacitated hypergraph
can be computed in O(np + n?logn) time and O(p) space matching the asymptotic time to find a single
minimum cut.

e We obtain a (2 + ¢)-approximation to the global minimum cut of a capacitated hypergraph in O(%(p logn +
nlog®n)) time, and for uncapacitated hypergraphs in O(p/¢) time. We achieve this by generalizing Matula’s
algorithm for graphs to hypergraphs.

e We describe an algorithm to compute approximate strengths of all the edges of a hypergraph in O(p log® nlog p)
time. This gives a near linear time algorithm for finding a (1 + ¢)-cut sparsifier based on the work of Ko-
gan and Krauthgamer. As a byproduct we obtain faster algorithms for various cut and flow problems in
hypergraphs of small rank.

Our results build upon properties of vertex orderings that were inspired by the maximum adjacency ordering for
graphs due to Nagamochi and Ibaraki. Unlike graphs we observe that there are several orderings for hypergraphs
and these yield different insights.

1 Introduction

We consider algorithmic and structural aspects of connectivity in hypergraphs. A hypergraph H = (V, E) consists of
a finite vertex set V and a set of hyperedges E where each edge e is a subset of vertices. Undirected loopless graphs
are a special case of hypergraphs where all edges are sets of size two. For the most part we use n to denote the
number of vertices |V, m to denote the number of edges |E|, and p to denote ., |e|. Note that p =D _, deg(v)
where deg(v) is the degree of v (the number of hyperedges that contain v). We observe that p is the natural
representation size of a connected hypergraph, and p is the number of edges in the standard representation of H as
a bipartite graph Gy = (V UE,F) with F = {(v,e)|v € V,e € E,v € e}. The rank of a hypergraph is the maximum
edge size, that is, max,cy |e|. We let r denote the rank. Note that graphs are hypergraphs of rank 2. A number of
results on hypergraphs assume that rank is a fixed constant. In this paper our focus is on general hypergraphs
without assumptions on r although some results are more meaningful for the case of small r.

Hypergraphs arise in a number of settings in both theory and practice. Some of the most basic algorithmic
questions regarding hypergraphs have to do with connectivity and cuts. Given a hypergraph H = (V,E) and a
vertex subset S C V, let §,(S) denote the set of edges that intersect both S and V' \ S. It is well-known that the set
function |6y(S)| defines a symmetric submodular set function over the ground set V. The connectivity (or the
global minimum cut value) of a hypergraph H, denoted by A(H), is defined as mingcscy |64(S)|; equivalently, it is
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the minimum number of edges that need to be removed such that H is disconnected. For distinct nodes s,t € V
we denote by A4(s, t) (or sometimes by A(s, t; H)) the edge-connectivity between s and t in H which is defined as
Mingcy sn(s,cjj=1 |0 (S)]. These definitions readily generalize to capacitated hypergraphs where each edge e € E
has a non-negative capacity c(e) associated with it. In this paper we study algorithmic and structural questions
that arise in computing A(H). In the sequel we use the term mincut to refer to the global mincut.

Algorithms for mincuts and s-t mincuts in graphs have been extensively studied. Traditional algorithms for
mincut were based on computing a sequence of (n — 1) s-t mincuts; s-t mincuts are most efficiently computed via
network flow although one can also compute them via submodular function minimization. The first algorithm for
finding a mincut in an undirected graph that avoided the use of flows was due to Nagamochi and Ibaraki [45].
They devised a surprising and influential algorithm based on maximum-adjacency orderings (MA-ordering) which
is an ordering of the vertices based on a simple greedy rule. An MA-ordering can be computed in O(m) time for
uncapacitated graphs and in O(m + nlogn) time for capacitated graphs. It has the following interesting property:
if s and t are the last two vertices in the ordering then {t} is an s-t mincut. This yields a simple O(mn + n?logn)
time algorithm [54] for computing a mincut in a capacitated graph and is currently the asymptotically fastest
deterministic algorithm. MA-orderings have other important structural properties which lead to several algorithmic
and structural results — many of these are outlined in [46]. Karger devised another highly influential technique
based on random contractions [30] which led to a randomized O(n?log® n)-time Monte Carlo algorithm for
computing a mincut in capacitated graphs [33]. Subsequently, using sampling techniques for cut-sparsification
and tree packings, Karger devised a randomized O(mlog® n) time Monte Carlo algorithm [31]. More recently
Kawarabayashi and Thorup [34] devised a deterministic O(mlog'?n) time algorithm for simple uncapacitated
graphs. Henzinger, Rao and Wang [29] improved the deterministic running time in simple uncapacitated graphs
to O(mlog® nloglogn) using flow partitioning.

What about hypergraphs? A simple and well-known reduction shows that A4(s, t) can be computed via s-t
network flow in the vertex capacitated bipartite graph Gy associated with H. Thus, using (n—1) network flows one
can compute A(H). However, Queyranne [50] showed that the Nagamochi-Ibaraki ordering approach generalizes
to find the mincut of an arbitrary symmetric submodular function'. A specialization of the approach of Queyranne
with a careful implementation leads to a deterministic O(np + n?log n)-time algorithm for capacitated hypergraphs
and an O(np)-time algorithm for uncapacitated hypergraphs. Two other algorithms achieving the same run-time
were obtained by Klimmek and Wagner [35] and Mak and Wong [42]. Both these algorithms are based on the
Nagamochi and Ibaraki ordering approach. Surprisingly, the orderings used by these three algorithms can be
different for the same hypergraph even though they are identical for graphs?! We will later show that we can
exploit their different properties in our algorithms.

Apart from the above mentioned results, very little else is known in the algorithms literature on mincut and
related problems in hypergraphs despite several applications, connections, and theoretical interest. Recent work
has addressed streaming and sketching algorithms when the rank is small [28,36]. Our initial motivation to address
these algorithmic questions came from the study of algorithms for element-connectivity and related problems
which are closely related to hypergraphs — we refer the reader to the survey [8]. In this paper the three main
questions we address are the following.

o Are there faster (approximation) algorithms for mincut computation in hypergraphs?

e How many distinct mincuts can there be in a hypergraph? Is there a fast algorithm to compute a compact
representation called the hypercactus representation that is known to exist [12,17]? For graphs it is well-
known that there are at most (Z) mincuts and that there exists a compact O(n)-sized data structure called
the cactus to represent all of them.

o Are there fast algorithms to sparsify a hypergraph to (approximately) preserve cuts? In graphs such results
have found powerful applications in addition to mathematical elegance.
1.1 Overview of Results
In this paper we address the preceding questions and obtain several new results that we outline below.

Sparse certificate and fast algorithm for small mincuts: A k-certificate of a graph G = (V, E) is a subgraph
G’ = (V,E’) of G that preserves all local connectivities in G up to k; that is A/ (s, t) = min{k, A;(s, t)} for all

1For a submodular function f : 2" — R the mincut is defined naturally as mingcgcy f(S).
2This observation does not appear to have been explicitly noted in the literature.



s,t € V. Nagamochi and Ibaraki [44] showed, via an implicit use of MA-ordering, that a k-certificate with O(kn)
edges can be found in linear time. In the hypergraph setting, a k-certificate is a hypergraph preserving local
connectivity up to k. A k-certificate with at most k(n—1) edges is called a k-sparse certificate, and it exists by greedy
spanning hypergraph packing [28]. However, the sum of degrees in the certificate can be O(kn?). Indeed, there are
examples where any k-sparse certificate cannot avoid the n? factor. We consider a more general operation where
we allow trimming of hyperedges; that is, a vertex v € e can be removed from e without e itself being deleted.
Trimming has been used for various connectivity results on hypergraphs. For example, in studying k-partition-
connected hypergraphs, or in extending Edmonds’ arborescence packing theorem to directed hypergraphs [21]
(see [19, Section 7.4.1, Section 9.4] for a exposition of the results using the trimming terminology).

We refer to a subhypergraph obtained through edge deletion and trimming and which preserves all cuts of
value up to k as a k-trimmed certificate. We show that for any hypergraph H on n nodes there is a k-trimmed
certificate H' that preserves all the local connectivities up to k such that the size of H’' in terms of the sum of
degrees is at most 2k(n — 1). In fact the certificate has the stronger property that all cuts are preserved up to k:
formally, for any A C V, |6(A)| = min{k, |6, (A)|}. Moreover such a certificate can be constructed in O(p) time.
This leads to an O(p + An?) time algorithm for computing the mincut in an uncapacitated hypergraph, substantially
improving the O(np) time when A is small and p is large compared to n. Sparsification is of independent interest
and can be used to speed up algorithms for other cut problems. We show an application to cut-sparsification in
weighted hypergraphs.

All mincuts and the hypercactus representation: We consider the problem of finding all the mincuts in a
hypergraph. For any capacitated graph G on n vertices, it is well-known, originally from the work of Dinitz,
Karzanov and Lomonosov [16], that there is a compact O(n) sized data structure, namely a cactus graph, that
represents all the mincuts of G. A cactus is a connected graph in which each edge is in at most one cycle (can be
interpreted as a tree of cycles). As a byproduct one also obtains the fact that there are at most (;) distinct mincuts
in a graph; Karger’s contraction algorithm gives a very different proof. After a sequence of improvements, there
exist deterministic algorithms to compute a cactus representation of the mincuts of a graph in O(mn + n?logn)
time [47] or in O(nmlog(n?/m))-time [18,25]. For uncapacitated graphs, there is an O(m + A%nlog(n/A))-time
algorithm [25]. There is also a Monte Carlo algorithm that runs in O(m) time [32] building on the randomized
near-linear time algorithm of Karger [31]. In effect, the time to compute the cactus representation is the same
as the time to compute the global mincut! We note, however, that all the algorithms are fairly complicated, in
particular the deterministic algorithms.

The situation for hypergraphs is not as straightforward. First, how many distinct mincuts can there be? Consider
the example of a hypergraph H = (V, E) with n nodes and a single hyperedge containing all the nodes. Then it
is clear that every S C V with 1 < |S| < |V| defines a mincut and hence there are exponentially many. However,
all of them correspond to the same edge-set. A natural question that arises is whether the number of distinct
mincuts in terms of the edge-sets is small. Indeed, one can show that it is at most ('21) It is a relatively simple
consequence of fundamental decomposition theorems of Cunningham and Edmonds [14], Fujishige [22], and
Cunningham [13] on submodular functions from the early 1980s. Recently Ghaffari et al. also proved this fact
through a random contraction algorithm [26]. Cheng [12], building on Cunningham’s work [13], explicitly showed
that the mincuts of a hypergraph admit a compact structure which we call a hypercactus representation. Later
Fleiner and Jordan [17] showed that a similar structure exists for any symmetric submodular function defined
over crossing families. However, these papers were not as concerned with algorithmic considerations.

In this paper we show that the hypercactus representation of the mincuts of a hypergraph, a compact O(n)
sized data structure, can be computed in O(np + n?logn) time and O(p) space. This matches the time to compute
a single mincut. The known algorithms for cactus construction on graphs are quite involved and directly construct
the cactus. We take a different approach. We use the structural theory developed in [12,13] to build the canonical
decomposition of a hypergraph which then allows one to build a hypercactus representation easily. The algorithmic
step needed for constructing the canonical decomposition is conceptually simpler and relies on an efficient algorithm
for finding a non-trivial mincut (one in which both sides have at least two nodes) in a hypergraph H if there is one.
Our technical contribution is to show that there is an algorithm for finding a slight weakening of this problem
that runs in O(p + nlogn) time. Interestingly, we establish this via the ordering from [42]. Our algorithm yields a
conceptually simple algorithm for graphs as well, and highlights the power of the decomposition theory for graphs
and submodular functions [13,14,22].

(2 + ¢) approximation for global mincut: Matula [43], building on the properties of MA-ordering, showed that
a (2 + &) approximation for the global mincut of an uncapacitated graph can be computed in deterministic O(m/¢)



time. The algorithm generalizes to capacitated graphs and runs in O(%(mlogn + nlog®n)) time (as mentioned
by Karger [30]). Although the approximation is less interesting in light of the randomized O(m) algorithm of
Karger [31] 3, it is a useful building block that allows one to deterministically estimate the value of a mincut. For
hypergraphs there was no such approximation known. In fact, the survey [8] observed that a near-linear time
randomized O(log n)-approximation follows from tree packing results, and raised the question of whether Matula’s
algorithm can be generalized to hypergraphs®.

In this paper we answer the question in the affirmative and obtain a (2 + ¢)-approximation algorithm for the
mincut of a capacitated hypergraph that runs in near-linear time — more formally in O(%( plogn + nlog®n)) time.
For a uncapacitated hypergraph, the algorithm runs in O(p/¢) time. In fact we show that the same algorithm
generalizes to a class of non-negative symmetric submodular functions that satisfy subadditive connectivity.

Approximating strengths and (1 + ¢)-cut sparsifiers: Benczir and Karger, in their seminal work [4], showed
that all cuts of a capacitated graph G = (V, E) on n vertices can be approximated to within a (1 £ ¢)-factor by a
sparse capacitated graph G’ = (V,E") where |E’| = O(nlogn/e?). Moreover, G’ can be computed in near-linear
time by a randomized algorithm. The algorithm has two steps. In the first step, it computes for each edge e
a number p, which is proportional to the inverse of the approximate strength of edge e (see Section 6 for a
formal definition). The second step is a simple importance sampling scheme where each edge is independently
sampled with probability p, and if it is chosen, the edge e is assigned a capacity u,/p, where u, is the original
capacity/capacity of e € E. It is shown in [4] that the probabilities p,, e € E can be computed by a deterministic
algorithm in O(mlog® n) time where m = |E| if G is capacitated, and in O(mlog?® n) time if G is uncapacitated or
has polynomially bounded capacities. More recent work [24] has shown a general framework for cut sparsification
where the sampling probability p, can also be chosen to be the approximate connectivity between the end points
of e. In another seminal work, Batson, Spielman and Srivastava [3] showed that spectral sparsifiers, which are
stronger than cut sparsifiers, with O(n/e?) edges exist, and can be computed in polynomial time. Lee and Sun
recently showed such sparsifiers can be computed in randomized O(m) time [40].

Guha et al. [28] devised a simple method for cut sparsifier of uncapacitated hypergraphs in the streaming
setting. The approach follows [4]. They showed that there is a sketch of O(¢~2n polylog n) space where a (1 £ ¢)-
cut sparsifier can be constructed. The running time is O(np). However, their results cannot be generalized to
capacitated hypergraphs. Kogan and Krauthgamer [36] extended Benczur and Karger’s sampling scheme and
analysis to show the following: for any capacitated hypergraph H = (V, E) with rank r there is a (1+¢)-approximate
cut sparsifier with O(n(r +logn)/e?) edges. They show that sampling with (approximate) strengths will yield the
desired sparsifier. Finding the strengths of edges in hypergraphs can be easily done in polynomial time. In this
paper, we develop a near-linear time algorithm for computing approximate strengths of edges in a capacitated
hypergraph. For this purpose we rely on sparsification for unweighted hypergraphs just as Benczur and Karger
relied on the sparsification of Nagamochi and Ibaraki. Fast sparsification leads to improved algorithms for several
cut problems and we outline a few simple and direct applications in Section 6.

1.2 Other Related Work

Kogan and Krauthgamer’s [ 36] sparsification relied on a more careful analysis of the random contraction algorithm
of Karger when applied to hypergraphs. They showed that if the rank of the hypergraph is r then the number of
a-mincuts for half-integer a > 1 is at most O(2% n?*) which is a substantial improvement over a naive analysis
that would give a bound of O(n"*). The exponential dependence on r is necessary. Aissi et al. later generalized
it to all real @ > 1 [1]. Kogan and Krauthgamer’s cut-sparsification results rely on the number of approximate
minimum cuts. In particular, given a n-vertex capacitated hypergraph H = (V, E) of rank r they show that there is
a capacitated hypergraph H’' = (V, E’) with O( (r +1ogn)) edges such that every cut capacity in H is preserved to
within a (1 £ ¢) factor in H'. Aissi et al. [1] considered parametric mincuts in graphs and hypergraphs of fixed
rank and obtained polynomial bounds on the number of distinct mincuts.

Hypergraph cuts have also been studied in the context of k-way cuts. Here the goal is to partition the vertex set
V into k non-empty sets so as to minimize the number of hyperedges crossing the partition. For k < 3 a polynomial
time algorithm is known [56] while the complexity was, until recently, unknown for any fixed k > 4. The problem
is NP-Complete when k is part of the input even for graphs [27]. Fukunaga [23] obtained a polynomial-time
algorithm for k-way cut when k and the rank r are fixed; this generalizes the polynomial-time algorithm for
graphs [27,55]. Karger’s contraction algorithm also yields a randomized algorithm when k and the rank r are

30 hides polylog factors.
4We use near-linear-time to refer to algorithms that run in time O(p log® n) for some fixed constant c.



fixed. Recently, it was shown that the k-way cut can be solved in randomized polynomial time for constant k [6].
When k is part of the input, k-way cut in graphs admits a 2(1 — 1/k)-approximation [52]. This immediately yields
a 2r(1—1/k)-approximation for hypergraphs. If r is not fixed and k is part of the input, it was recently shown [9]
that the approximability of the k-way cut problem is related to that of the k-densest subgraph problem, and hence
it is unlikely to admit a sub-polynomial approximation ratio.

Hypergraph cuts arise in several other contexts with terminals such as the s-t cut problem or its generalizations
such as multi-terminal cut problem and the multicut problem. In some of these problems one can reduce the
hypergraph cut problem to a node-capacitated undirected graph cut problem and vice-versa.

Organization: Section 2 sets up requisite notation, and also describes different vertex orderings and their
properties which underpin most of the results in the paper. Section 3 describes sparsification for unweighted
hypergraphs. Section 4 describes our algorithm for computing the cactus representation of all the minimum cuts.
Section 5 describes our extension of Matula’s algorithm and analysis to obtain a (2 + ¢)-approximation for the
global minimum cut of hypergraphs and a larger class of symmetric submodular functions. Section 6 describes our
algorithm to compute approximate strengths of edges in a weighted hypergraph that yields a near linear-time cut
sparsification algorithm.

2 Preliminaries

A hypergraph H = (V, E) is capacitated if there is a non-negative edge capacity function c : E — R, associated
with it. If all capacities are 1 we call the hypergraph uncapacitated; we allow multiple copies of an edge in the
uncapacitated case. A cut (S,V —S) is a bipartition of the vertices, where S and V — S are both non-empty. We
will abuse the notation and call a set S a cut to mean the cut (S,V —S). Two sets A and B cross if ANB, A\ B and
B\ A are all non-empty. For S C V, &4(S) is defined to be the set of all edges in E(H) that have an endpoint in
both S and V —S. We will drop H from the notation if the hypergraph is clear from the context. The capacity of
the cut S, denoted by ¢(S), is defined to be 2665(5) c(e). The function c : 2V — R defined above is called the cut
function. The function A(H) is the edge-connectivity of H and is defined as mingcscy, ¢(S). A cut S is a mincut of
H if ¢(S) = A(H). A hypergraph is k-edge-connected if A(H) > k. A set of edges F is an edge-cut-set if F = §(S) for
some cut S. A set of edges is a min edge-cut-set if F = §(S), where S is a mincut. For distinct vertices s, t € V(H),
an s-t cutis a cut S such that |SN{s, t}| = 1. A(s, t; H) is the value of the s-t mincut(minimum s-t cut) in H. The
function size(H) is defined as )., ., |e| in the uncapacitated case and as ), |e|c(e) in the capacitated case. For
UCV,H[U]=(U,{ele CU,e € E}) denotes the vertex induced subhypergraph of H.

For pairwise disjoint vertex subsets Ay, ..., Ay, E(A1,...,A; H) ={e | enA; # 0,1 < i < k} is the set of edges that
have an end point in each of the sets A4, ...,A;. Let d(A4,...,A; H) = ZeeE(Al,..‘,Ak;H) c(e) denotes the total capacity
of the edges in E(Ay, ..., A; H). Arelated quantity for two disjoint sets Aand B is d'(A, B; H) = X cxap.1).caus €(€)
where only edges completely contained in AU B are considered. As before, if H is clear from the context we drop it
from the notation. We abuse the notation and write singletons in place of sets for the above functions, i.e. for
vertices u and v, E(u,v) denotes E({u}, {v}).

A hypergraph H' = (V',E’) is a subhypergraph of H if V' C V and E’ C E. Thus a subhypergraph of H is
obtained by deleting vertices and edges. Removing a vertex v € e from e is called trimming e [19]. H' is a trimmed
subhypergraph of H if there is an injection ¢ : E — E’ where ¢(e) C e. Namely, H' is obtained by deleting vertices
and trimming edges.

Contracting an edge e in a hypergraph H results in a new hypergraph H' = (V’, E’) where all vertices in e are
identified into a single new vertex v,. Any edge e’ C e is removed. Any edge e’ that properly intersects with e is
adjusted by replacing e’ N e by the new vertex v,. We denote H' by H/e.

For simplicity, given a hypergraph H, we use n as the number of vertices, m as the number of edges, and
P = D..c; lel as the sum of degrees.

Equivalent digraph: s-t mincut in a hypergraph H can be computed via an s-t maximum flow in an associated
capacitated digraph (see [38]) H = (V, E) that we call the equivalent digraph. The digraph H = (V, E) is defined
as follows:

1. V=VUE"UE", where E* ={e*|e €E} and E- = {e |e € E}.
2. IfveeforveV ande€E then (v,e”) and (e*,v) are in E with infinite capacity.

3. Foreache €E, (e",et) € E has capacity equal to c(e).
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(a) A cactus. (b) A hypercactus.

Figure 2.1: Examples of cactuses and hypercactuses. Grey regions are hyperedges.

For any pair s, t € V(H), there is bijection between the finite capacity s-t cuts in H and s-t cuts in H. We omit
further details of this simple fact. The number of vertices in the equivalent digraph is O(m), and number of edges
is O(p). Suppose we wish to compute an s-t minimum cut in the equivalent digraph where s,t € V. If we use
Orlin’s algorithm [48] naively we obtain a running time of O(mp) for max s-t-flow. However, the longest simple
path in the equivalent digraph has length at most n. For any blocking flow based algorithm, there are at most n
blocking flow iterations. Using dynamic trees, the running time of max s-t-flow on the equivalent digraph using
Dinic’s algorithm is O(nplogn) [15,53].

Cut representations and hypercactus representation: Consider a hypergraph H. A hypergraph H* and a vertex
map ¢ : V(H) — V(H") is a (cut) representation of H if the following two properties are true.

1. For each mincut S of H, S* = ¢(S) is a mincut in H*.
2. For each mincut S* of H*, ¢ 1(S*) is a mincut of H.

If (H*, ¢) is a representation, then we can find all mincuts of H by finding all mincuts of H*. Indeed, by the
second property, if S* is a mincut of H*, we can obtain a mincut S = ¢ "}(5*) in H. By the first property, all mincuts
in H can be obtained this way. We are interested in finding a representation that is in a simple class of hypergraphs
such that finding all mincuts for a hypergraph in that class is easy.

A vertex is an articulation vertex if its removal disconnects the hypergraph (i.e., the remaining hypergraph
has at least two components.) A block is an inclusion-wise maximal induced subgraph that does not have an
articulation vertex. A cactus is a graph such that each of its blocks is either a single edge or a cycle. Another way
to characterize a cactus is that it is a graph in which no two cycles share an edge. A hypercactus is a hypergraph
such that each of its blocks is a single hyperedge or a cycle. A hypercactus can also be considered as a hypergraph
obtained by repeatedly replacing a cycle in a cactus with a single hyperedge covering all the vertices of the cycle.
See fig. 2.1 for examples. As we mentioned, every graph has a cactus cut representation. Similarly, for each
hypergraph, there exists a hypercactus cut representation [12]; Cheng refers to his representation as “structure
hypergraph”. Fleiner and Jordan [17] also defined a “hypercactus” for the more general setting of symmetric
submodular functions over crossing families. Their hypercactus representation is not the same as our definition
here. Under their definition a cycle is not considered a hypercactus, which in our view, is counterintuitive.

2.1 Vertex orderings

Nagamochi and Ibaraki’s work on vertex orderings for graphs has been generalized to symmetric submodular
functions by Queyranne [50] and further extended by Rizzi [51]. We set up the requisite notation in the abstract
context before addressing the case of hypergraphs.

Let f : 2" — R be a real-valued set function defined over a finite set V. We confine our attention to symmetric
functions, that is functions which satisfy the property that f(A) = f(V \ A) for all A C V. A set function f is
submodular if f(A)+ f(B) = f(AUB) + f(ANB) for all A,B C V. The function f is normalized if f (@) = 0. It is
well-known that the cut capacity function of a hypergraph is symmetric and submodular.



For a given set function f over V, a non-trivial minimizer is a set in argmin {f (S) | # ¢ S ¢ V}. The domain of
f, denoted dom(f), is V. We define A(x,y; f) =min{f(S):S S V,x €S,y ¢S}, and A(f) = min, yey Ax,y; ).
Hence A(f) is the value of a non-trivial minimizer of f. The value of a hypergraph mincut is precisely A(c), where
¢ is the cut function of H.

An ordered pair of vertices (s, t) is called a pendant pair for a function f if f({t}) = A(s, t; f). A pendant pair
for a hypergraph is defined naturally as a pendant pair of its cut function. There are three algorithms for computing
a hypergraph mincut following the Nagamochi-Ibaraki approach of finding a pendant pair, contracting the pair, and
recursing [35,42]. This approach has been generalized to symmetric submodular functions by Queyranne [50],
and even further by Rizzi [51], which we describe below.

Monotone and consistent maps: A function g defined over pairs of disjoint subsets of V is called order inducing
if it has the following properties.

e Symmetric: g(A, B) = g(B,A) for all disjoint sets A,B C V.
e Monotone: g(A,B) < g(A’,B) if AC A’ and A’ and B are disjoint subsets of V.
e Consistent: g(A,BUC) > g(B,AUC)if A, B and C are disjoint and g(A,C) > g(B, C).

The reason for calling such functions order inducing will be clear later. A vertex ordering is an ordering of the
vertices vy, ..., v,. The set of vertices V; = {vy,...,v;} are the first i vertices in the ordering. If f(S) = g(S,S) for
all S C V, we say g realizes f. Rizzi considered a max-back ordering of g. That is, an ordering of the vertices
Vi,...,V, such that

g(Vii,vi) 2 g(Viy,vy)

for all j > 1i.

Theorem 2.1 ( [51]) Suppose g realizes f, and let vy, ..., v, be a max-back ordering of an order inducing function
g over V. Then f({vn}) = 2'(vn—b Vn;f) = g(Vn—lr vn)-

In particular, if g realizes f, then a pendant pair of f can be found by computing the max-back ordering of g.
Brinkmeier strengthened the preceding theorem as follows.

Theorem 2.2 ( [5]) Suppose g realizes f, and let v4,...,v, be a max-back ordering of an order inducing function g
over V. Then for 1 <i <n, A(vi_1,v;;f) = g(Vi_1, v;).

It is easy to prove the following theorem via induction.

Theorem 2.3 Let g;,..., g be a collection of order inducing functions each of which realizes f. Then any convex
combination of g1,..., & is an order inducing function that realizes f .

Connectivity function of a submodular function: Let f be a symmetric submodular function. The connectivity
function d; of f is defined on all pairs of disjoint subsets of V as follows: d(A,B) = %(f (A+fB)—fAUB). It
can be easily seen that d; realizes f if f(V) = 0. In particular, we define a Queyranne ordering of a symmetric
submodular function f as a max-back ordering with respect to dy.

Lemma 2.4 Let c be the cut function of a hypergraph, then d.(A,B) = %(d(A,B) + d’(A, B)) for all disjoint A, B C V.

Proof: We just have to consider the case where ¢ is the cut function of a hypergraph with a single edge e. By
definition d (A, B) = 3(c(A) + ¢(B) — c(AUB)).

If e neither crosses A nor B, then we have d.(A,B) = 0 and d(A,B) = d’(A,B) = 0 and it is clear d.(A,B) =
%(d(A,B) +d’(A, B)). Hence, without loss of generality, we assume e crosses A. We have c(A) = 1. If e does not
cross B, and e has an element not in B, then e N B = . This shows d(A,B) = d’(4,B) = 0 and ¢(B) = 0. The
edge e must cross AU B, because e contains an element not in A, and e N B = . Therefore c(AUB) = 1. Hence
d.(A,B) = 1(c(A) + c(B) — c(AUB)) = 0 = 3(d(A, B) + d'(A, B)).

In the remaining case e must cross both A and B, therefore c(A) = c(B) =1 and d(A,B) = 1. If e CAUB, then
d’(A,B)=1and c(AUB) =0, we obtain d.(A,B) =1 = %(d(A,B) +d’(A, B)). On the other hand, if e Z AU B, then
d’(A,B) =0 and c(AUB) = 1, we also obtain d.(4,B) = 3(1+1—1) = 1/2 = 3(d(A, B) + d'(A, B)), the desired
result. O



One can observe that if f is non-negative, then d; is also non-negative. By submodularity, for any disjoint
ABCV,di(AB)=3(f(A)+f(B)—f(AUB)) = 5(f(A) + f(B)— fF(AUB)— f(ANB)) 2 0.

Vertex orderings for hypergraphs We work with several vertex orderings defined for hypergraphs. Given a
hypergraph H = (V, E) and an ordering of the vertices vy, ..., v,, several other orderings and quantities are induced
by such an ordering. The head of an edge h(e), defined as Vinin{jlv,ec}> 18 the first vertex of e in the ordering.
An ordering of the edges ey, ..., e, is called a head ordering, if min {jlvj € ¢;} <min{j|v; € ei+1}. An edgeeisa
backward edge of v if v € e and h(e) # v. The head of a backward edge incident to v comes before v in the vertex
order.

Definition An ordering of vertices vy,...,v, is called an a-ordering for a € [0,1] if forall1 <i < j < n,
ad(Vi_y,v;) + (1 —a)d'(Vi_y,v;) = ad(V;_,v;) + (1 —a)d’(Vi_1,v;). An ordering is called

1. a maximum adjacency ordering or MA-ordering if it is a 1-ordering.
2. atight ordering if it is a 0-ordering.
3. a Queyranne ordering if it is a %-ordering.

In graphs the three orderings coincide if the starting vertex is the same and ties are broken in the same way.
However, they can be different in hypergraphs. As an example, consider a hypergraph with vertices a, x, y,z and
four edges with capacities as follows: c({a,x}) =4,c({a,y}) =3,c({a, x,2}) =4 and c({a, y,2}) = 8. Capacities
can be avoided by creating multiple copies of an edge. Consider orderings starting with a. It can be verified that
the second vertex has to be x, y and g for tight, Queyranne, and MA-ordering respectively which shows that they
have to be distinct.

Klimmek and Wagner used the MA-ordering [35]. Mak and Wong used the tight ordering [42]. Queyranne de-
fined an ordering for symmetric submodular functions [50] which when specialized to cut functions of hypergraphs
is the one we define, see lemma 2.4. It is easy to verify the three orderings can be computed in O(p + nlogn) time
for capacitated hypergraphs, and in O(p) time for uncapacitated hypergraphs.

In Sections 3, 4 and 5, we use MA-ordering, tight ordering and Queyranne ordering, respectively. We state a
lemma that summarizes the crucial property that all a-orderings share. These three different orderings can be
used to find the mincut because of a more general phenomenon; every a-ordering is an order inducing function
that realizes the hypergraph cut function.

Lemma 2.5 The functions d and d’ are order inducing functions that realize the cut function of a hypergraph.

Proof: The proof is routine. We just have to show d and d’ are order inducing for hypergraph with only one edge.
So we consider the hypergraph with a single edge e. It is clear that d is symmetric. We have d(A, B) = 1 implies
the edge crosses both A and B, then certainly e also crosses A C A', therefore d is monotone. Similarly we can show
d’ is monotone.

To prove d is consistent, we have to prove that d(A,B U C) > d(B,AU C) for all disjoint sets A,B,C such
that d(A,C) = d(B,C). If d(B,AU C) = 0 then we are done because d is non-negative. Hence we can assume
d(B,AU C) = 1. In other words, the edge has at least 1 vertex in B, and at least one vertex in AU C. This shows
d(A,BUC) =1 if Ane is non-empty, and we are done. Assume AN e is empty, then this shows e N C is non-empty,
hence 1 =d(B,C) < d(A,C) =0, a contradiction.

Similarly, we can prove d’ is consistent. Again, we can assume d’(B,AUC) = 1. So we know e CAUBUC,
and e N B, eN (AU C) are non-empty. Note if AN e is non-empty, then d’(A,BU C) = 1, and we are done. Assume
AnNe is empty, then this shows e N C is non-empty. Because e NA =@ and e CAUBUC, hence e € BUC and
1=d'(B,C) <d’'(A,C) =0, a contradiction. O

Therefore, we obtain the following lemma for all a-orderings of the hypergraph as a direct corollary of
theorem 2.2.

Lemma 2.6 Let v,,...,V, be an a-ordering of a hypergraph, then {v,} is a min v,_;-v,-cut.



3 k-trimmed certificate and faster mincut algorithm for small A

This section shows that a well-known sparsification result for graphs can be generalized to hypergraphs. The
hypergraphs in this section are uncapacitated although multiple parallel edges are allowed.

Given an uncapacitated hypergraph H and a non-negative integer k, the goal of sparsification is to find a sparse
trimmed subhypergraph H' of H such that |6,(A)| = min(k, |64(A)|) for all A C V. That is, it preserves all cuts
up to value k. Such trimmed subhypergraphs are called k-certificates. A non-trimmed subhypergraph that is a
k-certificate with at most k(n — 1) edges is called a k-sparse certificate. It is known that there exists a k-sparse
certificate for each hypergraph [28]. The fact that such a certificate exists is not hard to prove. One can generalize
the forest decomposition technique for graphs [44] in a straightforward way. However, the size of the resulting
certificate could be large. Indeed, there might not exist any k-sparse certificate with size O(kn). Consider the
following example. Let H = (V, E) be a hypergraph on n vertices and n/2 — 1 edges (assume n is even) where
E= {el, .. .,en/z_l} and e; = {vi,vn/z, . ..,vn} for 1 <i < n/2. Any connected subhypergraph of H has to contain
all the edges and thus, even for k = 1, the sum of degrees is Q(n?).

However, we prove a stronger result if trimming is allowed. If H' is a k-certificate of H and size(H’) < 2k(n—1),
then it is called a k-trimmed certificate. One can see a k-trimmed certificate has at most k(n — 1) edges. Hence
k-trimmed certificates and k-sparse certificates coincide in graphs.

Theorem 3.1 Let H = (V, E) be a hypergraph on n vertices and m edges with size(H) = p. There is an algorithm
that for a given H, creates a data structure in O(p) time such that the following holds: for any given non-negative
integer k, the data structure returns a k-trimmed certificate H' of H in O(kn) time.

The above theorem is tight for graphs. Our proof is an adaptation of that of Frank, Ibaraki and Nagamochi [20]
for the graph version of the sparsification theorem.

Given a hypergraph H = (V, E) consider an MA-ordering v,,...,v, and let e,,...,e, be an induced head
ordering of the edges. Let D, (v) to be the first k backward edges of v in the head ordering, or all the backward
edges of v if there are fewer than k backward edges. For each vertex v and backward edge e of v, we remove
v from e if e & D (v). The new hypergraph from this operation is Hy. Formally, given H and k, H, = (V,E;) is
defined as follows. For an edge e € E let e’ denote the edge {v | v € e € D, (v) or v = h(e)}; E; is defined to be the
edge set {¢’ | e € E, |e| = 2}. It is easy to see that if j < k, H; is a trimmed subhypergraph of H.

Our goal is to show that H; is a k-trimmed certificate of H, and there is a data structure to obtain it quickly.

First, we show that H; can be retrieved quickly.

Lemma 3.2 Let H = (V, E) be a hypergraph on n vertices and m edges with size(H) = p. There is an algorithm that
creates a data structure in O(p) time such that Hy can be retrieved in O(size(H,)) time.

Proof: We sketch a data structure that can be created from hypergraph H in O(p) time, such that for all k, the
data structure can retrieve H,, in O(size(H,)) time. First, we compute the MA-ordering, which takes O(p) time.
Using the MA-ordering, we obtain the induced head ordering of the edges, and the head for each edge, again in
O(p) time; we omit the simple details for this step. For each vertex v, we can sort all the backward edges of v
using the head ordering in O(p) time as follows: we maintain a queue Q,, for each vertex v, and inspect the edges
one by one in the head ordering. When e is inspected, we push e into queue Q, if v € e and v is not the head of e.
This completes the preprocessing phase for the data structure. To retrieve H;, we maintain a set of queues that
eventually represent the set of edges E,. For each vertex v, find the edges in D, (v), which is exactly the first k
edges (or all edges if there are fewer than k edges) in Q,. For each edge e € D, (v), we push v into a queue Q, (if
Q. was not already created, we first create Q, and push the head vertex of e into Q,). At the end of the process,
each queue Q, contains the vertices of an edge in E;. The running time is O(size(H;)) since we only process D;(v)
for each v. O

Next, we show that size(H;) < 2k(n—1).
Lemma 3.3 Let H = (V, E) be a hypergraph on n vertices, for each k, size(H) < 2k(n—1).

Proof: For a vertex v, the number of backward edges containing v is called the backward sum of degrees. Note the
sum of degrees is no larger than twice the backward sum of degrees. Indeed, the number of edges cannot exceed
the backward sum of degrees because each edge is a backward edge for some vertex, and each backward edge has
exactly one head. Now we bound the backward sum of degrees of H,.. Each vertex v that is not v; is in at most k
backward edges in Hy, therefore the backward sum of degrees is at most k(n — 1), and the sum of degrees is at
most 2k(n—1). O



Finally, it remains to show that H, is a k-certificate of H.

Lemma 3.4 If v,,...,v, is an MA-ordering of H, and H,. is a hypergraph obtained from H via the ordering, then
Vi,...,V, is an MA-ordering of H.

Proof: By construction, d(V;,v;; Hy) < min(k,d(V;,v;;H)) for all i < j. Consider the first min{k,d(V;,v;; H)}
edges incident to v; in the head ordering; v; is not trimmed from them. Hence d(V;, v;; Hy) = min{k, d(V;, v;; H)}.
Foralli < j,

d(Vi_1,vi; Hy) =2 min{k, d(Vi_y, vi; H)} = min{k, d(Vi_y, Vj;H)} = d(Viy, VjQHk)-
This establishes that vy, ..., v, is an MA-ordering for H. O

For X C V we define y(X) = {e | e N X # 0} to be the set of edges that contain at least one vertex from X. We
need a helper lemma below.

Lemma 3.5 Let H = (V, E) be a hypergraph and A,BCV. ForueBand v €V, if E(u,v) € 6(A) Ny(B), then
[y(B)no6(A)| = [y(B—u)N 6(A)| + |E(u,v) \ E(B —u,u,v)|.

Proof: Consider an edge e € E(u,v) \ E(B—u,u,v). We claim that e & y(B —u). Indeed, if e € y(B —u), then e is
an edge that intersects B —u, {u} and {v}, but then e € E(B—u,u, v). This shows E(u,v) \ E(B —u,u,v) is disjoint
from y(B —u), and therefore disjoint from y(B —u) N 6(A).

We have (i) y(B—u)N &(A) € y(B)N 6(A) since y(B—u) € y(B), and (i) E(u,v) \ E(B—u,u,v) € y(B)N &(A)
by assumption. Since we have argued that y(B —u) and E(u,v) \ E(B —u,u, v) are disjoint, we have the desired
inequality

ly(B)N&6(A)| = |y(B—u)n6(A)| + |E(w,v) \ E(B—u,u,v)|.

O

Lemma 3.6 Let vy,...,v, be an MA-ordering for H = (V,E). Then, for all i < j and A C V such that v; € A and
vi €A [y(Vii) N 6(A)| = d(Viy, v))-

Proof: We fix j and prove by induction on i. For the base case consider i = 1. Indeed, in this case both sides of
the inequality are O and the desired inequality holds trivially. Assume lemma is true for all i’ < i. We consider two
cases.

Case 1: v;_; € A. Then because v; & A, E(v;_,v;) € 6(A) Ny(V;_;). We apply lemma 3.5 with B = V;_; and
u=v;_; and v = v; to obtain:

ly(Vic)) N 6(A) = [y (Viea) N 6(A) + |E(vi—1, Vi) \ E(Vig, Vieq, Vi)l
> d(Vig, vj) +|E(vi_1, V) \ E(Vi_p, i1, V)l
(apply induction on i — 1, A)
- d(‘é,l, VJ)
Case 2: v;_; € A. Note that i > 2. Consider A’ = V \ A. We have v,_; € A’ and v; € A’; therefore, E(v;,_1,V;) C
5(A)Ny(Vi_y). Applying lemma 3.5 withB=V,_;,u=v,_; and v =1v;,
ly(Vie)) N 6(AD] = [y (Viea) N S(AD)] + |E(vi—y, vi) \ E(Vi—p, Vi1, V)l
2 d(Vig, vi) + [E(vi1, vi) \ E(Vig, i1, V)
(apply induction on i — 1,A")
= d(‘/i—lb vi)
> d(Vi—y,v;) (from MA-ordering).
Since 6(A’) = 6(V \A) = 68(A), [y(Vi_1) N 6(A)| = |y(Vi_;) N 6(A)|. This finishes the proof. O

Using the preceding lemma we finish the proof that H; is a k-trimmed certificate.
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Theorem 3.7 For every ACV, |6y, (A)| = min(k, |64(A)]).

Proof: By induction on k. The statement is clearly true for k = 0.

Consider any k > 0. [0y (A)] < |6, (A)| for all i < k, because H; is a trimmed subhypergraph of Hy. If

|64(A)| =k’ < k, then by induction,
= 6p, (A)] < |64, (A).

Therefore, it suffices to only consider A such that |55 (A)| = k. We will derive a contradiction assuming that
|0y, (A)] < k. Since |5,(A)| = k, there exists an edge e € E(H) such that e € 65(A) but was either trimmed to
e’ € E(H,) such that e’ ¢ 6 1, (A) or e is removed completely because it is trimmed to be a singleton {h(e)}. Let
v; = h(e) and without loss of generality we can assume v; € A (otherwise we can consider A). Since e’ does not
cross A in Hy, there is a viEe NA with j > i (since v; is the head of e) and v; was trimmed from e during the
sparsification.

Dy (v;) has exactly k edges because backward edge e of v; is not in D (v;). For each f € D (v;), the trimmed
f'€eE (H k) contains both h(f) = v, and v;; we claim that for each such f, £ < i for otherwise e would be ahead
of f in the head order and v; would be tr1mmed from f before it is trlmmed from e. From this we obtain that
E(Vj_y,vj; Hi) = E(V;, v;; Hy) and hence d(V;_y, v;; Hi) = d(V;, vj; Hy) =

kZd(V 1,V Hk)_d( i ]:Hk)
=d(Viey, v Hi) + d(vi, vis H) — d(Viey, vi, vy H).
Hence d(Vl 1,V Hk)_k d(vl:v Hk)+d(vl 1, Vi,V ;Hk)-

From lemma 3.4 vy,...,v, is an MA-ordering of Hj as well. Applying lemma 3.6 to Hy, v; and v; and A,
Ivh,(Viei) N 6y, (A)] = d(Vl 1,Vj; Hy). Combining this inequality with the preceding one,

171, (Vie) N0y, (A)| = d(Viey, vy Hi) = k — d (v, vis H) + d(Vieg, vy, vy Hi). €))

We also observe that E(V,_y,v;,v;; Hi) S E(v;,v;;Hy) € 6y, (A) because v; € A and v; ¢ A. We obtain a
contradiction by the following set of 1nequa11t1es

k> 16y, (A)| (by assumption)
2 |ry, (V) N6y, (A
= lru, (Vie) N6, (A + [E(vy, vis Hi) \ E(Viey, vi, vjs Hy )
17, (Vie) N0y, (A + d(vy, vis Hi ) — d(Viey, vy, vy Hye)
> (k—d(v;,vj; Hy) + d(Viey, vi, vj3 Hy) ) + d(vi, vjs Hi) — d(Vioy, v, vj5 Hy)
(from eq. (1))
=k

This finishes the proof. O
Proof (Proof of theorem 3.1): A direct consequence of lemma 3.2, lemma 3.3 and theorem 3.7. O

One can ask whether tight ordering or Queyranne ordering would also lead to k-trimmed certificates. We
observe that they do not work if the only modification is the input ordering, and H; is constructed the same way
through the head ordering of the edges.

For tight ordering, consider H = ({0, 1, 2, 3}, E), where E = {{0, 1,2}, {0, 2,3},{1,2}}. The sequence 0,1,2,3
is a tight ordering. Hypergraph H, is H with edge {1,2} removed. One can see A4, (1,2) =1 < 2= 24(1,2).

For Queyranne ordering, consider H = ({0,...,4},E), where

E=1{{0,1,2},{0,1,2,3},{0,1,3,4},{1,3,4},{2,3}}.
0,1,2,3,4 is a Queyranne ordering. Hypergraph Hj is all the edges except the edge {2,3}. We have A5,(2,3) =

2 <3=24(2,3).
There may be other ways to obtain a k-trimmed certificate using these orderings but we have not explored this.
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Algorithmic applications: Computing connectivity in uncapacitated hypergraphs can be sped up by first finding
a trimmed certificate of the given hypergraph and then running a standard algorithm on the certificate. This is
especially useful when one is interested in small values of connectivity. For global mincut we obtain the following
theorem.

Theorem 3.8 The global mincut of an uncapacitated hypergraph H with n vertices and size(H) = p can be computed
in O(p + An?) time, where A is the value of the mincut of H.

Proof: Using theorem 3.1, we first compute a data structure in O(p) time that allows us to retrieve Hy in O(kn)
time for any given k. Suppose we knew a number k such that k > A and k = O(A). We can compute the k-trimmed
certificate H, in O(kn) time and compute A(H;) = A(H) in O(An?) time using one of the known algorithms since
size(H,) = O(An). To find k we apply exponential search for the smallest i such that 2! > A. Each search computes
hypergraph mincut on H,;, which takes O(2!n?) time. For any k > A, the value of the mincut on the k-trimmed
certificate equals to A. Therefore, the search stops when the value of mincut of Hy, is strictly smaller than 2!, The

total time for the computation is O(p + Zipr{logﬂ 2in%) = O(p + An?). O

A similar idea can be used to compute the edge-connectivity in H between some given pair s, t. An algorithm
for s-t connectivity that runs in time T(n, m, p) on a hypergraph with n nodes, m edges and sum of degrees p can
be sped up to T(n,m, A(s, t)n). A k-trimmed certificate can also help in computing a-approximate mincuts for
a>1.

k-sparse certificate: In some applications trimming is not meaningful and we actually want a k-sparse certificate
instead of a k-trimmed certificate. We have already mentioned that one can find a k-sparse certificate with k(n—1)
edges via the forest peeling technique of Nagamochi and Ibaraki; this was done in [28]. Even in this setting the
ordering based algorithm has an advantage over the naive forest peeling in terms of the run time. Suppose we
want a k-sparse certificate. This can be done easily by first computing H; as before, and replacing each edge in
H, by its original untrimmed counterpart in H. Note that the total number of edges is at most k(n — 1) and the
running time is O(p).

We need a capacitated version of the k-sparse certificate for Section 6. Given a hypergraph H = (V, E) with
capacities ¢ : E — R, we say that a subhypergraph H' = (V,E’) with E’ C E and capacities ¢/ : E' — R, is
a k-sparse certificate if (i) for all A € V, ¢/(6y:(A)) = min(c(64(A)), k), (ii) c’(e) < c(e) for all e € E’ and (iii)
Deer ¢'(€) Sk(n—1).

If ¢ is integer valued then we can run the uncapacitated algorithm by creating c(e) copies of an edge e and obtain
the desired k-sparse certificate; the running time will not be strongly polynomial. The general capacitated case is
handled by simulating the uncapacitated algorithm in an implicit fashion as follows. Given a capacitated hypergraph
H = (V,E), consider an MA-ordering of vertices v;,...,v,. Letey,..., e, be the induced head ordering of the edges,
just as before. The algorithm is similar to the uncapacitated version. For a vertex v, assume via renumbering
that its backward edges are e,,...,e, with capacities cy,...,¢,, and if i < j then e; comes before e; in the head
order of the edges. For v we define ¢, : E — R, as follows: for 1 <i < ¢, ¢,(e;) = max(min(k —Zj<i ¢;,¢;),0)
and c,(e) =0 for any edge e € E\ {e,,...,¢;}. We now define ¢’ : E — R, as follows: c’(e) = max,y c,(e). Let
E'={e € E|c'(e) > 0}. The capacitated hypergraph H' = (V, E") with capacity function ¢’ is a k-sparse certificate
of H. It is easy to see that the algorithm is implicitly simulating the uncapacitated algorithm with edges duplicated.
With some basic but careful bookkeeping, ¢’ can be computed in O(p) time. The running time is dominated by
finding the MA-ordering, which is O(p + nlogn) time.

This leads to the following theorem.

Theorem 3.9 There is an algorithm that fir a given uncapacitated hypergraph H and integer k, finds a k-sparse
certificate E' of H in O(p) time. If the hypergraph is capacitated, it finds a k-sparse certificate in O(p + nlogn) time.

4 Canonical decomposition and hypercactus representation

In this section, we are interested in finding a canonical decomposition of a capacitated hypergraph which captures,
in a compact way, information on all the mincuts. Cunningham [13] proved that such decomposition exists for an
arbitrary non-negative submodular function, following previous work by Cunningham and Edmonds [14] and
Fujishige [22]. Cheng [12] showed that the canonical decomposition can be used to efficiently, and relatively
easily, build a hypercactus representation. Subsequently Fleiner and Jorddn [17] obtained a similar result for
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arbitrary symmetric submodular functions. One can view the canonical decomposition as a more fundamental
object since it is unique while the cactus and hypercactus representations are not necessarily unique.

As noted already by Cunningham, the key tool needed to build a canonical decomposition is an algorithm to
find a non-trivial mincut. Here we show an efficient algorithm for finding such a mincut in a hypergraph, and then
use it to build a canonical decomposition. We can then construct a hypercactus representation from the canonical
decomposition as shown in [12]. We believe that this approach is easier to understand and conceptually simpler
than the existing deterministic cactus construction algorithms for graphs that build the cactus directly.

A cut is trivial if one side of the cut has exactly one vertex. A split is a non-trivial mincut. An s-t split is a split
that separates s and t.

4.1 An efficient split oracle for hypergraphs

Given a hypergraph H we would like to find a split if one exists. It is not hard to come up with a polynomial-time
algorithm for this task but here we wish to design a faster algorithm. We accomplish this by considering a weaker
guarantee which suffices for our purposes. The algorithm, given H and the mincut value A, outputs either a split
in H or a pair of vertices {s, t} such that there is no s-t split in H. We call such an algorithm a split oracle. We
describe a near-linear-time split oracle.

We first show how to use a maximum s-t flow in H to help decide whether there is an s-t split, and output one
if it exists.

Lemma 4.1 Given a maximum s-t flow in the equivalent digraph of H, and the value of mincut A in H, there is an
algorithm that in O(p) time either finds a s-t split, or certifies that no s-t split exists in H.

Proof: If the value of the maximum s-t flow is greater than A, there is no s-t split. Otherwise, there is an s-t split
iff there is a non-trivial min-s-t cut in H.

Suppose a directed graph G has k minimum u-v-cuts for some vertex pair (u, v). Given a maximum u-v flow in
G and an integer £, there is an enumeration algorithm [49] that outputs min(£, k) distinct min-u-v-cuts in O(£m)
time where m is the number of edges in G.

We run the enumeration algorithm with ¢ = 3 on H for the pair (s, t). Every min-s-t cut in H corresponds to a
min-s-t cut in H. If the algorithm returns at most two cuts and both are trivial then there is no s-t split. Otherwise
one of the output cuts is an s-t split. The running time is O(p) since the number of edges in H is O(p). O

One can find a maximum s-t flow in H using standard flow algorithms but that would not lead to a near-linear
time algorithm. In graphs, Arikati and Mehlhorn [2] devised a linear-time algorithm that computes the maximum
flow between the last two vertices of an MA-ordering. Thus, we have a near-linear-time split oracle for graphs.
Recall that in hypergraphs there are three orderings which all yield a pendant pair. We generalized Arikati and
Mehlhorn’s algorithm to a linear-time algorithm that tries to find a maximum flow between the last two vertices
of an MA-ordering of a hypergraph (the flow is in the equivalent digraph). Even though it appears to correctly
compute a maximum flow in all the experiments we ran, we could not prove its correctness. Instead we found a
different method based on the tight ordering, that we describe below.

Let v1,V,,...,V, be a tight ordering for a hypergraph H = (V, E). We define a tight graph G = (V, E’) with
respect to H and the given tight ordering as follows. For each edge e € E, we add an edge e’ to E’, where ¢’
consists of the last 2 vertices of e under the tight ordering. The key observation is the following.

Lemma 4.2 Suppose H = (V,E) is a hypergraph and v4,...,v, is a tight ordering for H, and G = (V,E’) is the
corresponding tight graph. Then, for 1 <i<j<n, d(V, J,G) =d'(V;,v;; H).

Proof: Consider any edge e counted in d’(V;, vi;H), e’ is counted in d’(V;, v;; G). This shows that d’'(v;, vi;H) <

d'(V;,vj; G).
JJ
To see the other direction, consider an e’ € E corresponding to an edge e € E. If ¢’ is counted in d’(V;, v;; G), it

must be that v; is the last vertex in e and the second to last vertex of e is in V;. This implies that e € V; U {VJ }, and
therefore counted ind’'(v,, v;; H), and completes the direction d’'(v;, vi;H) = d'(v;, vi; G). O

The preceding lemma implies that the tight ordering for H is a tight ordering for G. From lemma 2.6,

A(anb Vns G) = d/(anl’ Vns G) = d/(anlf Vn;H) = )'(anl’ vn;H)-
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Letting s = v,_; and t = v,,, we see that A(s, t; G) = A(s, t; H). Moreover, an s-t flow in G can be easily lifted
to an s-t flow in H. Thus, we can compute an s-t max flow in G in linear-time using the algorithm of [2] and this
can be converted, in linear time, into an s-t max-flow in H.

This gives the following theorem.

Theorem 4.3 The split oracle can be implemented in O(p + nlogn) time for capacitated hypergraphs, and in O(p)
time for uncapacitated hypergraphs.

4.2 Decompositions, Canonical and Prime

We define the notion of decompositions to state the relevant theorem on the existence of a canonical decomposition.
In later subsections we describe the computational aspects.

A hypergraph H is prime if it does not contain any split; in other words all mincuts of H are trivial. A capacitated
hypergraph is called a solid polygon if it consists of a graph cycle where each edge has the same capacity a, and a
hyperedge containing all vertices with capacity b. If a = 0, it is called brittle, otherwise it is called semi-brittle. A
solid polygon is not prime if it has at least 4 vertices. For a semi-brittle hypergraph with at least 4 vertices, every
split consists of two edges of the graph cycle and the hyperedge covering all vertices. For a brittle hypergraph with
at least 4 vertices, any non-trivial cut is a split.

Given a hypergraph H = (V, E) and a set U, a function ¢ : V — U defines a new hypergraph through a sequence
of contraction operations as follows: for each element u € U, contract ¢ *(u) into u. The resulting hypergraph
is the ¢-contraction of H. A hypergraph obtained from H = (V, E) by contracting S C V into a single vertex is
denoted by H/S.

{H,,H,} is a simple refinement of H if H; and H, are hypergraphs obtained through a split (V;,V,) of H and a
new marker vertex x as follows.

1. H, is H/V,, such that V, gets contracted to x.
2. H, is H/Vy, such that V; gets contracted to x.

If {H,,H,} is a simple refinement of H, then mincut value of H;,H, and H are all equal.

A set of hypergraphs D = {H;,H,,...,H,} is called a decomposition of a hypergraph H if it is obtained from
{H} by a sequence of operations each of which consists of replacing one of the hypergraphs in the set by its
simple refinement; here we assume that each operation uses new marker vertices. A decomposition D is a simple
refinement of decomposition D’ if D is obtained through replacing one of the hypergraph in D’ by its simple
refinement. A decomposition D’ is a refinement of D if D’ is obtained through a sequence of simple refinement
operations from D. If the sequence is non-empty, D’ is called a strict refinement. Two decompositions are equivalent
if they are the same up to relabeling of the marker vertices. A decomposition is minimal with property P if it is not
a strict refinement of some other decomposition with the same property P. A prime decomposition is one in which
all members are prime. A decomposition is standard if every element is either prime or a solid polygon.

Every element in the decomposition is obtained from a sequence of contractions from H. Hence we can associate
each element H; in the decomposition with a function ¢y, : V — V(H;), such that H; is the ¢ -contraction of H.
Every decomposition D has an associated decomposition tree obtained by having a node for each hypergraph in the
decomposition and an edge connecting two hypergraphs if they share a marker vertex.

The important theorem below is due to [13], and stated again in [12] specifically for hypergraphs.

Theorem 4.4 ( [13]) Every hypergraph H has a unique (up to equivalence) minimal standard decomposition. That
is, any two minimal standard decompositions of H differ only in the labels of the marker vertices.

The unique minimal standard decomposition is called the canonical decomposition. As a consequence, every
standard decomposition is a refinement of the canonical decomposition. We remark that minimality is important
here. It captures all the mincut information in H as stated below.

Theorem 4.5 ( [12,13]) Let D ={H,,...,H,} be a canonical decomposition of H.
1. For each mincut S of H, there is a unique i, such that ¢ (S) is a mincut of H;.

2. For each mincut S of H;, ¢;,'(S) is a mincut of H.
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Note that each hypergraph in a canonical decomposition is either prime or a solid polygon and hence it is easy
to find all the mincuts in each of them. We observe that any decomposition D of H can be compactly represented
in O(n) space by simply storing the vertex sets of the hypergraphs in D.

Recall that a set of edges E’ C E is called a min edge-cut-set if E’ = §(S) for some mincut S. As a corollary of
the preceding theorem, one can easily prove that there are at most (2) distinct min edge-cut-sets in a hypergraph.
This fact is not explicitly stated in [12,13].

Corollary 4.6 A hypergraph with n vertices has at most (g) distinct min edge-cut-sets.

Proof: Let H be a hypergraph on n vertices. If H is prime, then there are at most n min edge-cut-sets. If H
is a solid-polygon, then there are at most ('21) min edge-cut-sets. Let D be a canonical decomposition of H.
The decomposition D is obtained via a simple refinement {H;,H,} of H with size a and b, followed by further
refinements. Then, by induction, there are at most (;) + (g) min edge-cut-sets in H; and H,. Herea+ b =n+2

and a,b < n—1. Therefore (3) + (g) < (g) + (";1) <(5) when n> 4. O

As we already mentioned, the preceding corollary is also derived via a random contraction algorithm in [26].

4.3 Computing a canonical decomposition

In this section we describe an efficient algorithm for computing the canonical decomposition of a hypergraph H.

We say that two distinct splits (4,A) and (B, B) cross if A and B cross, otherwise they do not cross. One can
easily show that every decomposition is equivalently characterized by the set of non-crossing splits induced by
the marker vertices. Viewing a decomposition as a collection of non-crossing splits is convenient since it does not
impose an order in which the splits are processed to arrive at the decomposition — any ordering of processing the
non-crossing splits will generate the same decomposition.

Call a split good if it is a split that is not crossed by any other split; otherwise the split is called bad. A canonical
decomposition corresponds to the collection of all good splits. The canonical decomposition can be obtained
through the set of good splits [ 14, Theorem 3] via the following simple algorithm. If H is prime or a solid polygon
return {H} itself. Otherwise find a good split (A,A) and the simple refinement {H,,H,} of H induced by the split
and return the union of the canonical decompositions of H; and H, computed recursively. Unfortunately, finding a
good split directly is computationally expensive.

On the other hand finding a prime decomposition can be done via a split oracle by a simple recursive algorithm,
as we shall see in Section 4.4. Note that a prime decomposition is not necessarily unique. We will build a canonical
decomposition through a prime decomposition. This was hinted in [13], but without details and analysis. Here we
formally describe such an algorithm.

One can go from a prime decomposition to a canonical decomposition by removing some splits. Removing a
split corresponds to gluing two hypergraphs with the same marker vertex into another hypergraph resulting in
a new decomposition. We formally define the operation as follows. Suppose D is a decomposition of H with a
marker vertex x contained in H; and H,. We define a new contraction of H obtained by gluing H; and H,. Let
¢, and ¢y, be the contractions of H, respectively. Define function ¢’ : V — (V(H;) UV (H,)) — x as follows

I ¢H1(V) if ¢H2(V) =X
¢'(v)= {¢H2(v) if ¢H1(V) =Xx

H, is the contraction of H defined by ¢’. The gluing of D through x is the set D, = D —{H,,H,} U{H,}. The
operation reflects removing the split induced by x from the splits induced by D, therefore it immediately implies
the following lemma.

Lemma 4.7 D, is a decomposition of H. Moreover, D, can be computed from D and H in O(p) time.

In order to compute D, implicitly, we only have to obtain ¢y, , ¢, and compute a single contraction. Therefore
O(p) space is sufficient if we can obtain ¢, and ¢y, in O(p) time and space.
We need the following simple lemma.

Lemma 4.8 Let H be a solid polygon. Any decomposition of H is a standard decomposition. Thus, if D is a
decomposition of H, for any marker vertex, gluing it results in a standard decomposition of H.
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Proof: We first prove that any decomposition of H is a standard decomposition. This is by induction. If the solid
polygon consists of a cycle with positive capacity, then exactly two edges in the cycle and the edge that contains all
vertices crosses a split. One can verify that contraction of either side of the split results in a solid polygon or a
prime hypergraph. Otherwise, the solid polygon is a single hyperedge covering all vertices. Any contraction of this
hypergraph is a solid polygon.

The second part of the lemma follows from the first and the fact that gluing results in a decomposition. O

The following lemma is easy to see.
Lemma 4.9 Given a hypergraph H, there is an algorithm to check if H is a solid polygon in O(p) time.

Adding a split corresponds to a simple refinement. Therefore, if a decomposition D’ is a refinement of D, then
the set of induced splits of D is a subset of induced splits of D’.

Consider the following algorithm that starts with a prime decomposition D. For each marker x, inspect if
gluing through x results in a standard decomposition; one can easily check via the preceding lemma whether
the gluing results in a solid polygon which is the only thing to verify. If it is, apply the gluing, if not, move on to
the next marker. Every marker will be inspected at most once, therefore the algorithm stops after O(n) gluing
operations and takes time O(np). Our goal is to show the correctness of this simple algorithm.

The algorithm starts with a prime decomposition D which is a standard decomposition. If it is minimal then
it is canonical and no gluing can be done by the algorithm (otherwise it would violate minimality) and we will
output a canonical decomposition as required. If D is not minimal then there is a canonical decomposition D*
such that D is a strict refinement of D*. Let D* = {H;,H,,...,H,} where each H; is prime or a solid polygon.
Therefore D = Ui‘:lDi where D; is a refinement of H;. If H; is prime then D; = {H;}. If H; is a solid polygon then
D, is a standard decomposition of H;. Our goal is to show that irrespective of the order in which we process the
markers in the algorithm, the output will be D*. Let the marker set for D* be M* and that for D be M > M*.
Suppose the first marker considered by the algorithm is x. There are two cases.

The first case is when x € M — M*. In this case the marker x belongs to two hypergraphs G, and G, both
belonging to some D; where H; is a solid polygon. The algorithm will glue G; and G, and from lemma 4.8, this
gives a smaller standard decomposition D! of H;.

The second case is when the marker x € M*. Let x belong to two hypergraphs G; and G, where G; € D; and
G, € D; where i # j. In this case we claim that the algorithm will not glue G, and G, since gluing them would
not result in a standard decomposition. To see this, let D’ be obtained through gluing of G, and G,. The split
induced by x is in D* but not D’. Because the splits induced by D* is not a subset of splits induced by D’, D’ is
not a refinement of D*. However, as we noted earlier, every standard decomposition is a refinement of D*. Hence
D’ is not a standard decomposition.

From the two cases we see that no marker in M* results in a gluing and every marker in M — M* results in a
gluing. Thus the algorithm after processing D outputs D*. This yields the following theorem.

Theorem 4.10 A canonical decomposition can be computed in O(np) time given a prime decomposition.

Next we describe an O(np + n?logn) time algorithm to compute a prime decomposition.
4.4 Computing a prime decomposition

We assume there exists an efficient split oracle. Given a hypergraph H and the value of the mincut A, the split
oracle finds a split in H or returns a pair {s, t}, such that there is no s-t split in H. In the latter case we would like
to recurse on the hypergraph obtained by contracting {s, t} into a single vertex. In order to recover the solution,
we define how we can uncontract the contracted vertices.

Definition Consider a hypergraph H. Let H' = H/ {s, t}, where {s, t} is contracted to vertex v ;. Let G’ be a
¢'-contraction of H' such that ¢’(v(; ;;) = V5 ;- We define uncontracting v ,; in G’ with respect to H as a graph
G obtained from a ¢-contraction of H, where ¢ is defined as

o(v) = {¢'(v) if v ¢ {5, )

Y otherwise

See fig. 4.1 for a simple recursive algorithm that computes a prime decomposition based on the split oracle.
The following lemma justifies the soundness of recursing on the contracted hypergraph when there is no s-t split.
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PRIME(H, 1)
if |[V(H)| =4
Xx « a new marker vertex
query the split oracle with H and A
if oracle returns a split (S, V(H)—S)
{H,,H,} « REFINE(H, (S,V(H)—S), x)
return PRIME(H;, A) U PRIME(H,, A)
else the oracle returns {s, t}
D’ « PRIME(H/ {s,t},A), {s, t} contracts to v,
G’ « the member of D’ that contains v
G « uncontract v, in G’ with respect to H
if ({s,t},V(G)—{s,t})isasplitin G
{G,, G,} « refinement of G induced by {s, t}
D (D' —{G'}HU{G,G,}
else
De— (D' —{GHuUG
return D
else
return {H}

Figure 4.1: The algorithm for computing a prime decomposition.

Lemma 4.11 Suppose H is a hypergraph with no s-t split for some s, t € V(H). Let H = H/ {s, t}, where {s, t} is
contracted to vertex v ;. Let D be a prime decomposition of H', and let G’ € D’ such that G’ contains vertex v ;.
Let G be obtained through uncontracting v,y in G" with respect to H.

1. Suppose {s,t} defines a split in G and let {G,,G,} be a simple refinement of G based on this split. Then
D = (D' —{G'}) U{G,, Gy} is a prime decomposition of H.

2. If {s, t} does not define a split in G then D = (D’ —{G’'}) U {G} is a prime decomposition of H.

Proof: Every split in H’ is a split in H. Therefore (D’ —{G’}) U {G} is a decomposition of H. Other than G, all
other elements in (D’ — {G’}) U {G} are prime.

If G is not prime, then there is a split. There is no s-t split in G because H does not have any s-t split. Any
split in G must have the form (A, V(G) —A) where {s, t} C A. If A# {s, t}, then there exist some other vertex v € A,
which implies |[A— {s, t} U {v{s’t}} | >2,and (A—{s,t} U {v{s’t}} ,V(G’)—A) is a split in G’, a contradiction to the
fact that G’ is prime. Hence ({s, t},V(G)—{s, t}) is the unique split in G. Therefore the simple refinement of G
based on this unique split are both prime, and we reach the first case.

If G is prime, then we are done, as we reach the second case. O

Theorem 4.12 PRIME(H, A) outputs in O(n(p + T(n,m,p))) time a prime decomposition, where T(n,m, p) is the
time to query split oracle with a hypergraph of n vertices, m edges and sum of degree p.

Proof: Using induction and lemma 4.11, the correctness of the algorithm is clear. PRIME is called at most 2n times,
and each call takes O(p + T(n, m, p)) time. O

Using the split oracle from theorem 4.3 we obtain the following corollary.

Corollary 4.13 A prime decomposition of a capacitated hypergraph can be computed in O(np + n?logn) time. For
uncapacitated hypergraphs it can be computed O(np) time.

4.5 Reducing space usage

Our description of computing the prime and canonical decompositions did not focus on the space usage. A naive
implementation can use Q(np) space if we store each hypergraph in the decomposition explicitly. Here we briefly
describe how one can reduce the space usage to O(p) by storing a decomposition implicitly via a decomposition
tree.
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Consider a decomposition D = {H,,...,H,} of H=(V, E). We associate a decomposition tree T = (A, F) with
D where A= {a;, ...,a;}, one node per hypergraph in D; there is an edge a;a; € F iff H; and H; share a marker
vertex. With each a; we also store V(H;) which includes the marker vertices and some vertices from V(H). It
is easy to see that the total storage for the tree and storing the vertex sets is O(n); a marker vertex appears in
exactly two of the hypergraphs of a decomposition and a vertex of H in exactly one of the hypergraphs in the
decomposition.

Given the decomposition tree T, vertex sets V(H,), ..., V(H;) and a node a; € A, we can recover the hypergraph
H; (essentially the edges of H; since we store the vertex sets explicitly) associated with a node a; in O(p) time. For
each edge e incident to g; in T, let C, be the component of T — e that does not contain a;. The set of vertices in H
which are contracted to a single marker vertex in H; corresponding to the edge e is V(H) N (UajeceV(H 1)). We
collect all this contraction information and then apply the contraction to the original hypergraph H to recover the
edge set of H;. It is easy to see that this can be done in O(p) time.

4.6 Hypercactus representation

Note the similarity of theorem 4.5 and the definition of the hypercactus representation. It is natural to ask if there is a
hypercactus representation that is essentially a canonical decomposition. Indeed, given the canonical decomposition
of H, Cheng showed that one can construct a hypercactus representation that captures all mincuts [12] (he called
it a “structure hypergraph”). When H is a graph, the hypercactus is a cactus. We describe the details of the
construction of a hypercactus from the canonical decomposition, for the sake of completeness.

Assume without loss of generality that A(H) = 1. We construct the hypercactus given the canonical decomposi-
tion. First, we consider the case where the decomposition consists of only a prime or a solid polygon. If H is a
solid polygon, then it consists of a cycle and a hyperedge containing all the vertices. If the cycle has non-zero
capacity, we define H* to be the hypergraph consisting of a single cycle obtained from the solid polygon H by
removing the hyperedge that contains all the vertices. Each edge of the cycle in H* is assigned a capacity of % If
the cycle has zero capacity, then let H* is single hyperedge that contains all vertices, and this hyperedge is assigned
capacity 1. In both cases, (H*, ¢), where ¢ is the identity function, is a hypercactus representation.

If H is prime, let V' be the set of vertices that induce a trivial mincut, i.e. v € V' iff {v} is a mincut in H.
Introduce a new vertex vy, and define H* = ({vg} UV’, {{vy, v’} |v/ € V'}), with capacity 1 for each edge; in other
words we create a star with center v and the leaves being the vertices of V’. Define ¢ : V(H) — V(H*) as

u uev’
vy uév’

Then H* is a hypercactus, and (H*, ¢) is a representation of H, respectively.

For the more general case, let D* = {H,...,H;} be the canonical decomposition of H. For each i, construct
the hypercactus cut representation (H;, ¢;) of H; as described earlier. We observe that if x is a marker vertex in
H;, then it is also present in H;. The hypergraph H* is defined to be the hypergraph constructed from Hj, ..., H;
by identifying marker vertices. The hypergraph H* is a hypercactus; each marker vertex is an articulation vertex
and each H is either a block (if H is a single hyperedge or a cycle), or H; is a union of blocks where each block
is an edge (if H is a star). The construction also gives us the mapping ¢ : V(H) — V(H") obtained by gluing
together ¢4, ..., ¢ in the natural fashion. The pair (H*, ¢p) is a hypercactus representation of H.

The preceding construction and the algorithm for computing the canonical decomposition gives the following
theorem.

¢(u)={

Theorem 4.14 A hypercactus representation of a capacitated hypergraph can be found in O(n(p + nlogn)) time and
O(p) space. For uncapacitated hypergraphs the run time improves to O(np).

Proof: We combine theorem 4.10 and corollary 4.13. The space usage can be made O(p) based on the discussion
in Section 4.5. O

If H is a graph, (H*, ¢) constructed in theorem 4.14 is a cactus representation. The asymptotic time and
space bounds obtained in theorem 4.14 match those of the algorithm from [47]. We believe that our approach is
conceptually simpler.

Via sparsification we obtain a faster algorithm for uncapacitated hypergraphs.

Theorem 4.15 A hypercactus representation of an uncapacitated hypergraph can be found in O(p + An?) time and
O(p) space.
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Proof: We can find the mincut value A, and a (A + 1)-sparsifier H' of H in O(p + An?) time. theorem 3.7 shows
that every mincut in H is a mincut in H’, and vice versa. Therefore the hypercactus representation for H' is a
hypercactus representation for H. We apply theorem 4.14 to H’ to obtain a hypercactus of H in the claimed time
and space bounds. O

For graphs Gabow [25] achieves a running time of O(m + A2nlog(n/A)) which is faster than the O(p + An?) =
O(m + An?) run time given by the preceding theorem when A = O(n). Gabow’s algorithm is quite complex and it
is an open problem whether one can achieve a similar running time for hypergraphs, even when they have fixed
rank.

5 Near-linear time (2 + ¢) approximation for mincut

Matula gave an elegant use of MA-ordering to obtain a (2 + ¢)-approximation for the mincut in an uncapacitated
undirected graph in O(m/¢) time [43]. Implicit in his paper there is an algorithm that gives a (2 + ¢)-approximation
for capacitated graphs in O(%(mlogn + nlog?n)) time; this was explicitly pointed out by Karger [30]. Here we
extend Matula’s idea to hypergraphs. We describe an algorithm that outputs a (24 ¢)-approximation for hypergraph
mincut in O(%(p logn + nlog? n)) time for the capacitated case, and in O(p/¢) time for the uncapacitated case. In
fact, we show a more general result. For any non-negative symmetric submodular function whose connectivity
function d; is subadditive, we can produce a (2 + ¢)-approximation of the minimizer using O(@) value oracle
calls to the function f. Note that Queyranne’s algorithm that outputs an exact minimizer requires Q(n®) oracle
calls.

A connectivity function of f, d;, is subadditive if d;(A,B U C) < d¢(A, B) + d;(A, C) for all disjoint A, B, C. The
function d; is additive if the preceding inequality holds with equality. We say a function is nice, if it is normalized,
symmetric, submodular and its connectivity function is subadditive. It is easy to see that non-negative weighted
sum of nice functions is also nice.

Theorem 5.1 The cut function of a hypergraph is nice.

Proof: It suffices to prove the theorem for hypergraphs with a single edge since we can then use the fact that a
general hypergraph cut function is the sum of single-edge hypergraph cut functions.
Consider the hypergraph on n vertices V, and a single edge e. Consider arbitrary disjoint sets of vertices A, B
and C. We want to show that
d.(A,BUC)<d./(AB)+d.(AC).

If d.(A,BU C) = 0, then the inequality is clearly true. Hence we can assume d.(A, B U C) is either % or 1. Suppose
d.(A,BUC) = 1. Since d.(A,B) = %(d(A,B) +d’(A,B)) for all A and B, we have d(A,BUC)=d'(A,BUC) =1.
This shows e N (B U C) is non-empty and e C AUB U C. Either e N B or e N C is non-empty. Therefore either
d(A,B) or d(A,C) is 1. Assume d(A,B) = 1. If we also have d(A,C) = 1, then we have d.(A,BUC) =1 =
%d(A,B)+ %d(A, C) <d.(AB)+d.(A B). If otherwise d(A, C) = 0, this implies eNC is empty, and e € AUB. Hence
d’(A,B) = 1. We have d.(A,BUC) =1 = 2(d(A,B) + d'(4,B)) = d.(A,B) < d.(A,B) +d.(A,C).

Now, we assume that d.(A,BUC) = % This shows d(A,BUC) =1, and either d(A, B) or d(A, C) is 1. Either
way d.(A,BUC) =1 < 1d(A,B) + 3d(A, C) < d.(A,B) + d.(A, C). o

The preceding proof shows that the connectivity function of a graph cut function is additive. Are all nice
functions hypergraph cut functions? The answer is no. Yamaguchi showed that there exists a hypergraph cut
function h, and a graph cut function g, such that h — g is a normalized symmetric submodular function but not
a hypergraph cut function [57, Remark 2.]. It is easy to see that h — g has subadditive connectivity since g has
additive connectivity.

We now consider nice functions instead of hypergraph cut functions. After we describe the algorithm and
analysis in the more general setting, we estimate the running time of the algorithm for the specific case of
hypergraphs. We define o(f) =, ., f(v) and 6(f) = min,.y f (v). Given a set function f over V and S CV we
can obtain a derived set function f’ by contracting S into a new element s as follows. The function f’: 2" - R
where V/ = (V \ S)U {s} is defined as: f'(X)=f(X)ifs ¢ X, and f'(X) = f(SU(X \ {s})) if s € X. Similarly one
can define, inductively, a function obtained from f by contracting several disjoint sets. It is not hard to see that
nice functions are closed under the contraction operation.
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Recall the Queyranne ordering of the vertices in f is an ordering of the vertices vy,...,V,, such that
df(Vi’Vi+1) 2 df(Vi,V')

for all j > i+ 1, where d;(A,B) = 3(f (A) + f (B) — f (AU B)).

Let v4,...,Vv, be a Queyranne ordering of the given function f. Given a non-negative number a, a set of
consecutive vertices in the ordering v,, V441, .. .,V, where a < b is called a-tight if d¢(V;,v;41) = aforalla <i < b.
The maximal a-tight sets partition V. We obtain a new function by contracting each maximal a-tight set into a
single vertex. We call the contracted function an a-contraction. Note that the contraction depends both on a and
the specific Queyranne ordering.

Lemma 5.2 Let f be any normalized symmetric set function on {v;,...,v,}. Consider any ordering of the vertices
Vi,...,Vy, then

de(vi—l’ V)= %O'(f)
i=1
Proof: The proof follows from the following series of simple equalities.
n 1 n
;df(vi_l,vi) = 5;0(\4_1) FFO) V)
1< 1
= gg(f(vi_l)—f(vi)) +5 Z Fo)
1 1
= S —FV)+5 ;f(w)

1 n
= ng(m

=20()
O

One important aspect of a-contraction of a nice function f is that o(f”) < 2an if f is the function obtained
from a-contraction.

Lemma 5.3 Let f' be an a-contraction of a given nice function f. Then o(f’) < 2an where n = |dom(f)|.

Proof: Assume the a-tight partition of V is X, ..., X}, where the ordering of the parts is induced by the Queyranne
ordering. For 1 <i < h, letA; = U;'=1 X;. Since each X; is a maximal a-tight set, d;(A;,x) < a for all x € X;,;.
We have the following set of inequalities:

h
o(f)= D F(X;)

i=1

h
=2 d; (A, X)) (lemma 5.2)
i=1
h
<2>° > di(A,x) (subadditivity)
i=1 x€X;

h
< ZZalXiI < 2an.

i=1

The second important property of a-contraction is captured by the following lemma.
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APPROXIMATE-MINIMIZER(f )

if (|dom(f)| = 2)
5 —0o(f)
if (6 =0)

return O

ae =6
Compute Queyranne ordering of f
f’ « a-contraction of f
A/ « APPROXIMATE-MINIMIZER(f")
return min(6, ")

else
return oo

Figure 5.1: Description of (2 + ¢)-approximation algorithm. It is easy to remove the recursion.

Lemma 5.4 Let f be a non-negative symmetric submodular function over V and let v, ..., v, be a Queyranne ordering
of the vertex set V. If v; and v; are in an a-tight set then A(v;,v;; f) = a.

Proof: Assume without loss of generality that i < j. Consider any k such that i < k < j. We have d;(Vj, vi1) = @
because v; and v; are in the same a-tight set. By theorem 2.2, A(v, Viy1; f) = dp (Vi, Viy1) = . By induction and
using the fact that for any a, b,c €V, A(a,c; f) = min(A(a, b; ), A(b, c; f)), we have A(v;,v; f) = a. O

fig. 5.1 describes a simple recursive algorithm for finding an approximate mincut.

Theorem 5.5 APPROXIMATE MINIMIZER outputs a (2 + ¢)-approximation to an input nice function f, and can be

implemented in O(” log = P, f))) oracle calls.

Proof: We first argue about the termination and run-time. From lemma 5.3, o(f') < 53; 21§ ( f). Since o(f) =

nd(f), we see that each recursive call reduces the o value of the function by a factor of 5 +€. The number of
vertices strictly decreases after each recursive call, because otherwise o value would not change. This ensures
termination.

Let f” be any non-trivial normalized symmetric submodular function (that has at least two vertices) that arises
in the recursion. The minimizer value does not reduce by contraction and hence A(f”) > A(f) which in particular

implies that 5(f”) > A(f), and hence o(f”) > 2|dom(f")|A(f). After the first recursive call, o(f') < 5=n&(f).

— 2+¢
Thus the total number of recursive calls is O(e ! log( ”f((;)))). The work in each call is dominated by the time to

compute a Queyranne ordering which can be done in O(n?) oracle calls [50]. This time gives the desired upper
bound on the run-time of the algorithm.

We now argue about the correctness of the algorithm which is by induction on n. It is easy to see that the
algorithm correctly outputs the mincut value if n = 1 or if 6 = 0. Assume n > 2 and §(f) > 0. The number of
vertices in f’ is strictly less than n if §(f) > 0 since the o strictly decreases. Since contraction does not reduce
the non-trivial minimizer value, A(f’) > A(f). By induction, A(f) < A’ < (2+ &)A(f'). If A(f’) = A(f) then the
algorithm outputs a (2 + ¢)-approximation since 6 > A(f). The more interesting case is if A(f') > A(f). This
implies that there are two distinct nodes x and y in f such that Alx,y;f)=A(f) and x and y are contracted
together in the a-contraction. By lemma 5.4, A(x,y; f) > a = 5~ +€ >—6 which implies that 6 < (2+ ¢)A(f). Since the
algorithm returns min(5, A’) we have that the output is no more than (2 + £)A(f). O

Since 5(f) can be much larger than A(f), we can preprocess the function to reduce & to at most n?A(f) to
obtain a strongly polynomial run time.

Lemma 5.6 Let § = min,,, d;(V;_y,v;) for a given Queyranne ordering vy,...,v, of a non-negative symmetric
submodular function f. Then 3 < l(f) <np.

Proof: From lemma 5.4, A(u,v;f) = B for all u,v € V because V is a f-tight set. Therefore A(f) = f8. Let
i* = argmin,. d;(V;_y,v;). Then,

MFYSFVira) = dp Ve, VA Vin)) < D dp (Vg v) < (n+1—i)B < .

j=ir
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O

Let 3 be the value in lemma 5.6, then a 2nf3-contraction of f yields a nice function f’ where o(f’) = O(n?p).
This also implies that 5(f") = O(n?f). Applying the (2 + ¢) approximation algorithm to f’ gives us the following
corollary.

Corollary 5.7 A (2 + ) approximation for a nice function can be computed in O(¢~*n?logn) oracle calls.

We now specialize the algorithm to hypergraphs.

Corollary 5.8 A (2 + ¢) approximation for hypergraph mincut can be computed in O(¢~'(p + nlogn)logn) time for
capacitated hypergraphs, and in O(e*p) time for uncapacitated hypergraphs.

Proof: The dominating term in each iteration is the time to compute a Queyranne ordering, which takes O(p +
nlogn) time for capacitated hypergraphs. The number of recursive calls is O(%log n). For the capacitated
hypergraphs, we obtain the running time O(¢~!(p + nlogn)logn).

For uncapacitated hypergraphs, recall p is o(f ), where f is the cut function of the hypergraph. The running
time in each recursive call is dominated by computing a Queyranne ordering, which takes O(p) time. In the
proof of Theorem 5.5, p reduces by a factor of 2/(2 + ¢) after each recursive call. The running time is therefore

oY (52)'p) = O(¢"'p). O

Our analysis assumed that f is a normalized symmetric submodular function. Suppose f is not normalized but
has subadditive connectivity. We first find a (2 + ¢) approximate minimizer of the normalization f (the function f’
defined by £'(S) = f(S) — f(9)). It can be seen that the output is also a (2 + &) approximate minimizer of f.

6 Strength estimation and cut sparsifiers

The goal of this section is to describe a fast algorithm for computing approximate strengths of edges of a capacitated
hypergraph. These estimates can be used to do importance sampling and obtain a cut sparsifier as shown in [36].

The strength of an edge e, denoted by yy(e), is defined as max,cycy A(H[U]); in other words the largest
connectivity of a vertex induced subhypergraph that contains e. We also define the cost {j;(e) of e as the inverse of
the strength; that is {y(e) = 1/yy(e). We drop the subscript H if there is no confusion regarding the hypergraph.
The preceding definitions generalize easily to capacitated hypergraphs. The strength of an edge e is the maximum
mincut value over all vertex induced subhypergraphs that contain e.

The main technical result of this section is the following.

Theorem 6.1 Let H = (V, E) be a rank r capacitated hypergraph on n vertices. There is an efficient algorithm that
computes for each edge e an approximate strength y’(e) such that the following properties are satisfied:

1. lower bound property: y'(e) < yy(e) and
2. a-cost property: »...p ﬁ < a-(n—1) where a = 0(r).

For uncapacitated hypergraphs the running time of the algorithm is O(p log® n) and for capacitated hypergraphs the
running time is O(p log p log® n).

We refer to estimates that satisfy the properties of the preceding theorem as a-approximate strengths. One
idea that comes to mind in finding O(a)-approximate strengths is to convert the given hypergraph into a graph
and compute approximate strengths in the graph. For example, we could replace each hyperedge with a clique,
or a star spanning the vertices contained in the edge. The minimum strength of the replaced edges might be
an O(a)-approximation. Unfortunately, this will not work even when then rank is 3. Consider the following
hypergraph H with vertices {vy,...,v,}. There is an edge e = {vy,v,}, and edge {v,v,,v;} for all 3 <i < n. The
strength of e in H is 1. Let G be a graph where each {v;,v,,v;} in H is replaced with a star centered at v; and
spans {v;, V4, v;}. The strength of e in G is n— 1. This bound also holds if each hyperedge {v;, v5, v;} is replaced by
a clique.

Our proof for the preceding theorem closely follows the corresponding theorem for graphs from [4]. A key
technical tool for graphs is the deterministic sparsification algorithm for edge-connectivity due to Nagamochi and
Ibaraki [44]. Here we rely on our generalization to hypergraphs from Section 3. Before we describe the proof we
discuss some applications in the next subsection.
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6.1 Applications

A capacitated hypergraph H' = (V, E’) is a (1 % ¢)-cut approximation of a capacitated hypergraph H = (V, E), if for
every S C V, the cut value of S in H' is within (1 % ¢) factor of the cut value of S in H. Below we state formally the
sampling theorem from [36].

Theorem 6.2 ( [36]) Let H be a rank r capacitated hypergraph where edge e has capacity c(e). Let H, be a

hypergraph obtained by independently sampling each edge e in H with probability p, = min(%, 1) and

capacity c(e)/p, if sampled. With probability at least 1 —O(n™%), the hypergraph H, has O(n(r + logn)/e?) edges
and is a (1 % €)-cut-approximation of H.

The expected capacity of each edge in H, is the capacity of the edge in H. It is not difficult to prove that
a-approximate strength also suffices to get a (1= ¢)-cut-approximation. That is, if we replace v with a-approximate
strength 7/, the sampling algorithm will still output a (1 + ¢)-cut-approximation of H. Indeed, the lower bound
property shows that each edge will be sampled with a higher probability, therefore the probability of obtaining a
(1 £ ¢)-sparsifier increases. However, the number of edges in the sparsifier increases. The a-cost property shows
that the hypergraph H, will have O(an(r +logn)/e?) edges.

From theorem 6.1, we can find an O(r)-approximate strength function y’ in O(p log? nlog p) time.

Corollary 6.3 A (1 + ¢)-cut approximation of H with O(nr(r + logn)/e?) edges can be found in O(plog?® nlogp)
time with high probability.

The number of edges in the (1 % ¢)-cut approximation is worse than theorem 6.2 by a factor of r. It is an open
problem whether the extra factor of r can be removed while maintaining the near-linear running time.

As is the case for graphs, cut sparsification allows for faster approximation algorithms for cut problems. We
mention two below.

Mincut: The best running time known currently to compute a (global) mincut in a hypergraph is O(pn) [35,42].
We have already seen, in Section 5, an algorithm that obtains a (2+ ¢)-approximation in O(p/¢) time. Via Corollary
6.3 we can first sparsify the hypergraph and then apply the O(pn) time mincut algorithm to the sparsified graph.
This gives a randomized algorithm that, with high probability, outputs a (1 + ¢)-approximate mincut in a rank
r hypergraph in O(n?r?(r + logn)/e? + plog®nlogp) time. For small r the running time is O(p + n%/&?) for a
(1 + ¢)-approximation.

s-t mincut: The standard technique to compute an s-t mincut in a hypergraph is computing an s-t maximum
flow in an associated capacitated digraph with O(n + m) vertices and O(p) edges [38]. An s-t maximum flow in
such graph can be found in O(p+/n+ m) time [39]. Via sparsification corollary 6.3, we can obtain a randomized
algorithm to find a (1 + ¢)-approximate s-t mincut in a rank r hypergraph in O(n®/2r%2(r +logn)®?/e® + p) time.
For small r the running time is O(p + n®/2/¢%) for a (1 + ¢)-approximation.

6.2 Properties of edge strengths

A k-strong component of hypergraph H is an inclusion-wise maximal set of vertices U € V such that H[U] is
k-edge-connected. An edge e is k-strong if y(e) > k, otherwise e is k-weak. k(H) is the number of connected
components of a hypergraph H.

We start with a simple observation that simplifies later proofs.

Proposition 6.4 Deleting an edge does not increase the strength of any remaining edge. Contracting an edge does not
decrease the strength of any remaining edge.

Lemma 6.5 Let A,B C V such that ANB # . We have A(H[AU B]) > min(A(H[A]), A(H[B])). In particular the
k-strong components are pairwise disjoint.

Proof: Note that H[A U B] contains every edge that belongs to H[A] or H[B]. Consider an arbitrary cut S in
H[AUB]; S crosses A or S crosses B which implies that |64,51(S)| = min{A(H[A]), A(H[B])}. Since S was
arbitrary we have A(H[AU B]) = min{A(H[A]), A(H[B])} as desired.

Consider k-strong components A and B such that AN B # . From the preceding argument, A(H[AU B]) =
min(A(H[A]), A(H[B])) = k. Maximality of k-strong components implies that A=AUB = B. O

Lemma 6.6 Let H = (V, E) be a hypergraph. If an edge e € E crosses a cut of value k, then yy(e) < k.
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Proof: Suppose S is a cut such that |6;(S)| < k and e € 65(S). Consider any U C V that contains e as a subset and
let H = H[U]. Itis easy to see that |6,,(SNU)| < k and hence A(H’) < k. Therefore, y(e) = max,cycy A(H[U]) <
k. O

Lemma 6.7 (Extends Lemma 4.5 and Lemma 4.6 [4]) Let e, e’ be distinct edges in a hypergraph H = (V, E).
1. Ifyy(e) =k and ¢’ is a k-weak edge then yy(e) = yy.(e) where H = H \ ¢’

2. Suppose yy(e) < k (that is e is a k-weak edge) and e’ is a k-strong edge. Let H' = H /e’ obtained by contracting
e’. If f is the corresponding edge of e in H' then yy(e) =y (f).

In short, deleting a k-weak edge does not decrease the strength of a k-strong edge, and contracting a k-strong edge
does not increase the strength of a k-weak edge.

Proof: We prove the two claims separately. By proposition 6.4, to prove the equality of either claim, only one side
of the inequality has to be proven.

Deleting a k-weak edge Since e is k-strong in H, there is U C V such that A(H[U]) > kande CU. Ife’ C U,
e’ would be a k-strong edge. Since e’ is k-weak, e’ does not belong to H[U]. Thus H'[U] = H[U] which implies
that y.(e) = k.

Contracting a k-strong edge Let H' = H /e’ where ¢’ is a k-strong edge in H. Let v, be the vertex in H’
obtained by contracting e’. Let U’ C V(H’) be a set that certifies the strength of f, that is yy.(f) = A(H'[U’]) and
f CU'. Ifv, ¢ U’ then it is easy to see that U’ € V(H) and H[U’] = H’[U’] which would imply that y.(f) = yg(e).
Now we consider the case when v,, € U’. Let U be the set of vertices in V(H) obtained by uncontracting v, in U’.
That is, U = (U’ \ v, )Ue’. Note thate C U.

Let W be a set that certifies the strength of ¢’ in H, namely v, (e’) = A(H[W]) and ¢’ € W. We now consider
the graph H[U U W] and prove a lower bound on its mincut value. Consider any cut S CUUW in HHUUW].
If S crosses W or is strictly contained in W (that is S € W), then S has cut value at least A(H[W]). Otherwise,
S CU\W or W CS. By symmetry, we only consider the case when S CU \ W. Sincee’ CUNW,S# U and S is
also a cut in H'[U], and therefore |6 11(S)| = |8 y1(S)]. From these two observations we have

AMH[UUW]) = min(A(H'[U']), A(H[W])).

But A(H[W]) =yg(e’) > yy(e) = A(H[U UW]). Therefore, yy(e) = A(H[UUW]) = A(H'[U']) = v5(f).
O

Theorem 6.8 (Extends Lemma 4.10 [4]) Consider a connected uncapacitated hypergraph H = (V,E). A capaci-
tated hypergraph H' = (V, E) with capacity {(e) on each edge e has minimum cut value 1.

Proof: Consider a cut S of value k in H; that is |64(S)| = k. For each edge e € 6(S), yy(e) < k by lemma 6.6.
Therefore e has capacity at least 1/k in H’'. It follows the cut value of S in H' is at least k - 1/k > 1. Thus, the
mincut of H’ is at least 1.

Let S be a mincut in H whose value is k*. It is easy to see that for each e € 64(S), yy(e) = k*. Thus the value
of the cut S in H' is exactly k* - 1/k* = 1. m|

Lemma 6.9 (Extends Lemma 4.11 [4]) For an uncapacitated hypergraph H = (V, E) with at least 1 vertex,

> ¢e) < n—x(H).

e€E

Proof: Let t =n—k(H). We prove the theorem by induction on ¢.

For the base case, if t = 0, then H has no edges and therefore the sum is 0.

Otherwise, let t > 0. Let U be a connected component of H with at least 2 vertices. There exists a cut X of cost
1 in H[U] by theorem 6.8.

Let H = H—6(X). H' has at least one more connected component than H. By Proposition 6.4, for each
e € E(H') yy(e) = vy (e); hence {y (e) = {(e). By the inductive hypothesis, ZeeE(H,) ()< (n—xH))<t—1.
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ESTIMATION(H)
Compute a number k such that y,(e) = k for all e € E(H)
Hy«<—H,i+<1
while there are edges in H;_;
F; < WEAKEDGES(H,_;, 2'k)

fore € F;
7'(e) 27"k
Hi < H; ,—F
i—i+1
return y’

Figure 6.1: The estimation algorithm

The edges in H are exactly §(X) U E(H’). By the same argument as in the preceding lemma, Zeeé(x) Cyle)=1.

Therefore,
D3 lule)= D0 Lule)+ D) Cule)

e€E(H) e€d(X) e€E(H’)

=1+ > Lule)

ecE(H’)
<1+ > Zule)
e€E(H’)
<1+(t—1)=t.

O

Corollary 6.10 The number of k-weak edges in an uncapacitated hypergraph H on n vertices is at most k(n — k(H)).

6.3 Estimating strengths in uncapacitated hypergraphs

In this section, we consider uncapacitated hypergraphs and describe a near-linear time algorithm to estimate the
strengths of all edges as stated in theorem 6.1. Let H = (V, E) be the given hypergraph. The high-level idea is
simple. We assume that there is a fast algorithm WEAKEDGES(H, k) that returns a set of edges E’ C E such that E’
contains all k-weak edge in E; the important aspect here is that E’ may contain some edges which are not k-weak,
however, the algorithm should not output too many such edges (this will be quantified later).

The estimation algorithm is defined in fig. 6.1. The algorithm repeatedly calls WEAKEDGES(H, k) for increasing
values of k while removing the edges found in previous iterations.

Lemma 6.11 Let H = (V, E) be an uncapacitated hypergraph. Then,
1. For each e € F;, y(e) > 21" k. That is, the strength of all edges deleted in iteration i is at least 2" k.
2. Foreach e €E, v'(e) < y(e).

Proof: yy (e) < yy(e) for all i and e € E(H;) because deleting edges cannot increase strength. Let E; denote the
set of edges in H; with E, =E.

We prove that 2'k < 7w, (e) for all e € E; by induction on i. If i = 0, then k < yy (e) for all e € E,. Now we
assume i > 0. At end of iteration (i — 1), by induction, we have that y,_ (e) = 2171k for each e € E;_;. In iteration
i, F; contains all 2'k-weak edges in the graph H,_;. We have E; = E;_; —F,. Thus, for any edge e € E;, Tu,(e) = 2k.
This proves the claim.

Since F; € E;_,, it follows from the previous claim that yy(e) = vy, (e) = 271k for all e € F;. Since the F;
form a partition of E, we have y/(e) < yy(e) for alle € E. m|

Note that in principle WEAKEDGES(H, k) could output all the edges of the graph for any k > A(H). This would
result in a high cost for the resulting strength estimate. Thus, we need some additional properties on the output
of the procedure WEAKEDGES(H, k). Let H = (V,E) be a hypergraph. A set of edges E’ C E is called ¢-light if
|E’| < £(x(H—E’)—x(H)). Intuitively, on average, we remove £ edges in E’ to increase the number of components
of H by 1.
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Lemma 6.12 IfWEAKEDGES(H, k) an ak-light set of edges for all k, then the output y’ of the algorithm ESTIMATION(H)
satisfies the 2a-cost property. That is, Y. % <2a(n—1).

Proof: From the description of ESTIMATION(H ), and using the fact that the edge sets Fy, F,, ..., partition E, we
1 1
have Xocp 7y = 2iz |Fil 707 _ ‘
F; is the output of WEAKEDGES(H;_;,2'k). From the lightness property we assumed, |F;| < a2'k(x(H;) —
k(H;_;)). Combining this with the preceding equality,

1 1
Z = ; IFi|ﬁ < ZZa(K(Hi)—K(Hi_l)) <2a(n—1).

e€E Y/(e) i>1

6.3.1 Implementing WEAKEDGES

We now describe an implementation of WEAKEDGES(H, k) that outputs a 4rk-light set.

Let H = (V, E) be a hypergraph. An edge e is k-crisp with respect to H if it crosses a cut of value less than k. In
other words, there is a cut X, such that e € §(X) and |6(X)| < k. Note that any k-crisp edge is k-weak. A set of
edges E’ C E is a k-partition, if E’ contains all the k-crisp edges in H. A k-partition may contain non-k-crisp edges.

We will assume access to a subroutine PARTITION(H, k) that given H and integer k, it finds a 2k-light k-partition
of H. We will show how to implement PARTITION later. See fig. 6.2 for the implementation of WEAKEDGES.

WEAKEDGES(H, k)
E 0
repeat 1+ log, n times:
E’ « E’ UPARTITION(H, 2rk)
H«H-F
return E’

Figure 6.2: Algorithm for returning a 4rk-light set of all k-weak edges in H.

Theorem 6.13 WEAKEDGES(H, k) returns a 4rk-light set E’ such that E’ contains all the k-weak edges of H with
O(logn) calls to PARTITION.

Proof: First, we assume H has no k-strong component with more than 1 vertex and that H is connected. Then
all edges are k-weak and the number of k-weak edges in H is at most k(n— 1) by corollary 6.10. It also implies
that >, deg(v) < rk(n—1). By Markov’s inequality at least half the vertices have degree less than 2rk. For any
vertex v with degree less than 2rk, all edges incident to it are 2rk-crisp. Thus, after the first iteration, all such
vertices become isolated since PARTITION(H, 2rk) contains all 2rk-crisp edges. If H is not connected then we
can apply this same argument to each connected component and deduce that at least half of the vertices in each
component will be isolated in the first iteration. Therefore, in logn iterations, all vertices become isolated. Hence
WEAKEDGES(H, k) returns all the edges of H.

Now consider the general case when H may have k-strong components. We can apply the same argument as
above to the hypergraph obtained by contracting each k-strong component into a single vertex. The is well defined
because the k-strong components are disjoint by lemma 6.5.

Let the edges removed in the ith iteration to be E;, and the hypergraph before the edge removal to be H;. So
H;., = H;—E,. Recall that PARTITION(H;, 2rk) returns a 4rk-light set. Hence we know |E;| < 4rk(x(H;,,)—«(H;)).

E'| =D |E| < ) 4rk(x(Hp,) — k(H,)) = 4rk(x(H — E') — x(H))

i>1 i>1

This shows E’ is 4rk-light. O

It remains to implement PARTITION(H, k) that returns a 2k-light k-partition. To do this, we use k-sparse
certificates. Recall by theorem 3.9, we can obtain a k-sparse certificate in O(p) time.

A k-sparse certificate E’ is certainly a k-partition. However, E’ may contain too many edges to be 2k-light.
Thus, we would like to find a smaller subset of E’. Note that every k-crisp edge must be in a k-sparse certificate and
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PARTITION(H, k)

if number of edges in H < 2k(n—«(H))
E' —edgesin H
return E’

else
E’ « k-sparse certificate of H
H « contract all edges of H—E’
return PARTITION(H, k)

Figure 6.3: Algorithm for returning a 2k-light k-partition.

hence no edge in E \ E’ can be k-crisp. Hence we will contract the edges in E \ E’, and find a k-sparse certificate in
the hypergraph after the contraction. We repeat the process until eventually we reach a 2k-light set. See fig. 6.3
for the formal description of the algorithm.

Theorem 6.14 PARTITION(H, k) outputs a 2k-light k-partition in O(p logn)
time.

Proof: If the algorithm either returns all the edges of the graph H in the first step then it is easy to see that the
output is a 2k-light k-partition since the algorithm explicitly checks for the lightness condition.

Otherwise let E’ be a k-sparse certificate of H. As we argued earlier, E— E’ contains no k-crisp edges and hence
contracting them is safe. Moreover, all the original k-crisp edges remain k-crisp after the contraction. Since the
algorithm recurses on the new graph, this establishes the correctness of the output.

We now argue for termination and running time by showing that the number of vertices halves in each recursive
call. Assume H contains n vertices, the algorithm finds a k-sparse certificate and contracts all edges not in the
certificate. The resulting hypergraph has n’ vertices and m’ edges. We have m’ < k(n— 1) by theorem 3.9. If
n’—1 < (n—1)/2, then the number of vertices halved. Otherwise n’—1 > (n—1)/2, then the number of edges is
m’ < k(n—1) < 2k(n’— 1), and the algorithm terminates in the next recursive call.

The running time of the algorithm for a size p hypergraph with n vertices is T(p,n). The running time T(p, n)
satisfies the recurrence T(p,n) = O(p) + T(p,n/2) = O(p logn). O

Putting things together, ESTIMATION(H) finds the desired O(r)-approximate strength.

Theorem 6.15 Let H = (V,E) be an uncapacitated hypergraph. The output ¥’ of ESTIMATION(H) is a O(r)-
approximate strength function of H. ESTIMATION(H) can be implemented in O(p log® nlog p) time.

Proof: Combining lemma 6.11, lemma 6.12 and theorem 6.13, we get the output y’ of ESTIMATION(H) is a
O(r)-approximate strength function. The maximum strength in the graph is at most p, so all edges with be
removed at the (1+1log p)th iteration of the while loop. In each iteration, there is one call to WEAKEDGES. Each call
of WEAKEDGES takes O(p log®n) time by combining theorem 6.14 and theorem 6.13. The step outside the while
loop takes linear time, since we can set k to be 1 as a lower bound of the strength. Hence overall, the running
time is O(p log®nlogp). m|

6.4 Estimating strengths in capacitated hypergraphs

Consider a capacitated hypergraph H = (V, E) with an associated capacity function c : E — N, ; that is, we assume
all capacities are non-negative integers. For proving correctness, we consider an uncapacitated hypergraph H’ that
simulates H. Let H’ contain c(e) copies of edge e for every edge e in H; one can see that the strength of each of
the copies of e in H’ is the same as the strength of e in H. Thus, it suffices to compute strengths of edges in H’. We
can apply the correctness proofs from the previous sections to H’. In the remainder of the section we will only
be concerned with the running time issue since we do not wish to explicitly create H’. We say H is the implicit
representation of H'.

By theorem 3.9, we can find k-sparse certificate E’ of H’ such that |[E’| < k(n—1), in O(p + nlogn) time, where
p is the number of edges in the implicit representation.

The remaining operations in PARTITION and WEAKEDGES consist only of adding edges, deleting edges and
contracting edges. These operations take time only depending on the size of the implicit representation. Therefore
the running time in Theorem 6.14 and theorem 6.13 still holds for capacitated hypergraph.
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Lemma 6.16 Suppose we are given a hypergraph H = (V, E) and a lower bound b on the strengths of the edges. If
the total capacity of all edges is at most bM, then ESTIMATION(H) can be implemented in O(p log® nlog M) time.

Proof: Because b is a lower bound of the strength, we can set k to be b in the first step. The maximum strength in
the graph is at most bM, all edges will be removed at the (1 + log M )th iteration of the while loop. Each iteration
calls WEAKEDGES once, hence the running time is O(p log® nlog M). m|

The running time in lemma 6.16 can be improved to strongly polynomial time by using the windowing
technique [4].

Assume we have disjoint intervals I, ..., I, where for every e € E, y(e) € I; for some i. In addition, assume
I; = [a;, b;], b; < p?a; and b; < a;,, for all i. We can essentially apply the estimation algorithm to edges with
strength inside each interval. Let E; be the set of edges whose strengh lies in interval I;. Indeed, let H; to be
the graph obtained from H by contracting all edges in E; where j > i, and deleting all edges in E;, where j’ <i.
For edge e € E; let ¢ be its corresponding edge in H;. From lemma 6.7, vy (e’) = yy(e). The total capacity of
H; is at most pb; < pa;. We can run ESTIMATION(H;) to estimate v, since the ratio between the lower bound
a; and upper bound pb; is p>. Let p; be the size of H;, and n; be the number of vertices in H;, so the running
time for ESTIMATION(H,) is O(p; log® n; log p;) by lemma 6.16. The total running time of ESTIMATION over all H; is
o2 pi log® n;logp;) = O(p log® nlog p). Constructing H; from H,, takes O(p; + p;;1) time: contract all edges in
H;,, and then add all the edges e, where y(e) € I;. Therefore we can construct all Hy,...,H, in O(p) time.

It remains to find the intervals I,...,I,. For each edge e, we first find values d,, such that d, < y(e) < pd,.
The maximal intervals in | J,z[d., pd.] are the desired intervals. We now describe the procedure to find the values
d, foralle € E.

Definition The star approximate graph A(H) of H is a capacitated graph obtained by replacing each hyperedge e
in H with a star S,, where the center of the star is an arbitrary vertex in e, and the star spans each vertex in e.
Every edge in S, has capacity equal to the capacity of e.

It is important that A(H) is a multigraph: parallel edges are distinguished by which hyperedge it came from.
We define a correspondence between the edges in A(H) and H by a function 7. For an edge e’ in A(H), n(e) = e if
e’ €S,. Let T be a maximum capacity spanning tree in A(H). For e € E, define T, to be the minimal subtree of T
that contains all vertices in e. Note that all the leaves of T, are vertices from e.

For any two vertices u and v, we define d,,, to be the capacity of the minimum capacity edge in the unique u-v-
path in T. For each edge e € E we let d, = min, ,, d,,,. We will show d, satisfies the property that d, < y(e) < pd,.

LetV, = Ue,eTe nt(e’). Certainly, y(e) = A(H[V,]), because all vertices of e are contained in V,. A(H[V,]) = d,
because every cut in H[V,] has to cross some 7t(e’) where e’ € T,, and the capacity of nt(e’) is at least d,. Hence
y(e) = d,.

We claim if we remove all edges in H with capacity at most d,, then it will disconnect some s,t € e. If the
claim is true then e crosses a cut of value at most pd,. By lemma 6.6, y(e) < pd,. Assume that the claim is not
true. Then, in the graph A(H) we can remove all edges with capacity at most d, and the vertices in e will still
be connected. We can assume without loss of generality that the maximum capacity spanning tree T in A(H) is
computed using Kruskal’s greedy algorithm [37]. This implies that T, will contain only edges with capacity strictly
greater than d,. This contradicts the definition of d,.

A(H) can be constructed in O(p) time. The maximum spanning tree T can be found in O(p + nlogn) time. We
can construct a data structure on T in O(n) time, such that for any u,v € V, it returns d,,, in O(1) time. [7] To
compute d,, we fix some vertex v in e, and compute d, = min,¢, -, d,, using the data structure in O(|e|) time.
Computing d, for all e takes in O(ZeeE le]) = O(p) time. The total running time is O(p + nlogn). We conclude the
following theorem.

Lemma 6.17 Given a capacitated hypergraph H, we can find a value d, for each edge e, such that d, < y(e) < pd, in
O(p + nlogn) time.

The preceding lemma gives us the desired intervals. Using lemma 6.16, we have the desired theorem.

Theorem 6.18 Given a rank r capacitated hypergraph H with capacity function c, in O(p log? nlog p) time, one can
find a O(r)-approximate strength function of H.
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7 Concluding Remarks

We close with some open problems. The main one is to find an algorithm for hypergraph mincut that is faster than
the current one that runs in O(np + n?logn) time. We do not know a better deterministic run-time even when
specialized to graphs. However we have a randomized near-linear time algorithm for graphs [31]. Can Karger’s
algorithm be extended to hypergraphs with fixed rank r? Recently there have been several fast s-t max-flow
algorithms for undirected and directed graphs. The algorithms for directed graphs [39,41] have straightforward
implications for hypergraph s-t cut computation via the equivalent digraph. However, hypergraphs have additional
structure and it may be feasible to find faster (approximate) algorithms.

We described a linear time algorithm to find a maximum flow between the last two vertices of a tight-ordering
of a hypergraph (the flow is in the equivalent digraph of the hypergraph). We believe that such a linear time
algorithm is also feasible for the last two vertices of an MA-ordering of a hypergraph.

We obtained a fast algorithm that outputs O(r)-approximate strengths of a hypergraph. Can we compute
O(1)-approximate strengths in near linear time? This would allow us to avoid the extra factor of r in Corollary 6.3.
Kogan and Krauthgamer [36] gave an upper bound on the sparsifier in terms of edges. This translates to an upper
bound on the representation size but when r is large it may not be tight. Can one prove lower bounds on the
number of edges or the representation size of a (1 + ¢)-cut sparsifier for hypergraphs?

Some of the research in this paper was inspired by work on element connectivity and we refer the reader to [8]
for related open problems.
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