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Abstract

The notion of element-connectivity has found several important applications in network design and routing
problems. We focus on a reduction step that preserves the element-connectivity [3,4,17], which when applied
repeatedly allows one to reduce the original graph to a simpler one. This pre-processing step is a crucial ingredient
in several applications. In this paper we revisit this reduction step and provide a new proof via the use of setpairs.
Our main contribution is algorithmic results for several basic problems on element-connectivity including the
problem of achieving the aforementioned graph simplification. We utilize the underlying submodularity properties
of element-connectivity to derive faster algorithms.

1 Introduction
Let G = (V, E) be an undirected simple graph. The edge-connectivity between two distinct nodes u, v, denoted by
λG(u, v), is the maximum number of edge-disjoint paths between u and v in G. The vertex-connectivity between u
and v, denoted by κG(u, v) is the maximum number of internally vertex-disjoint paths between u and v. These
two connectivity measures are classical and extensively studied in graph theory, combinatorial optimization and
algorithms. The notion of element-connectivity is more recent and is defined as follows. Let T ⊆ V be a set of
terminals; vertices in V \ T are referred to as non-terminals. For any two distinct terminals u, v ∈ T , element-
connectivity between u and v is the maximum number of u-v paths in G that are pairwise “element”-disjoint where
elements consist of edges and non-terminals. Note that element-disjoint paths need not be disjoint in terminals.
We use κ′G(u, v) to denote the element-connectivity between u and v. Via Menger’s theorem one can characterize
edge, vertex and element connectivity in an equivalent way via cuts. We use κ′G(T ) =minu,v∈T κ

′
G(u, v) to denote

the global element-connectivity, the minimum number of elements whose deletion separates some pair of terminals.
See Fig. 1.1 for example.

Element-connectivity can be seen to generalize edge-connectivity by letting T = V . At the same time, element-
connectivity is also closely related to vertex-connectivity. If T is an independent set then κ′G(u, v) is the maximum
number of paths from u to v that are disjoint in non-terminals. In particular, if T contains exactly two vertices s
and t, then κG(s, t) = κ′G(s, t). Element-connectivity has found several applications in network design, routing
and related problems, some of which we will discuss later. Several of these applications rely on an interesting
graph reduction operation shown first by Hind and Oellermann [17]. To describe their result we use the notation
G/pq to denote the graph obtained from G by contracting the edge pq, and G − pq to denote the graph with edge
pq deleted.

Theorem 1.1 (Hind & Oellermann [17]) Let G = (V, E) be an undirected graph and T ⊆ V be a terminal-set such
that κ′G(T) ≥ k. Let pq be any edge where p, q ∈ V \ T. Then κ′G1

(T) ≥ k or κ′G2
(T) ≥ k where G1 = G − pq and

G2 = G/pq.

Chekuri and Korula generalized the theorem to show that the same reduction operation also preserves the
local element-connectivity of every pair of terminals.

Theorem 1.2 (Chekuri & Korula [3]) Let G = (V, E) be an undirected graph and T ⊆ V be a terminal-set. Let pq
be any edge where p, q ∈ V \ T and let G1 = G − pq and G2 = G/pq. Then one of the following holds: (i) ∀u, v ∈ T,
κ′G1
(u, v) = κ′G(u, v) (ii) ∀u, v ∈ T, κ′G2

(u, v) = κ′G(u, v).

We refer to the preceding theorem as the reduction lemma following the usage from [3]. By repeatedly applying
the reduction lemma, as observed in prior work, we obtain the following corollary.
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Figure 1.1. The black vertices are the terminals. The left image shows 4 element-disjoint st-paths. The right image shows removing 4
elements disconnects s and t. κ′(s, t) = 4

Min Cut Min Cut(WHP) All-pair All-pair (WHP) Reduce
λ Õ(m) [20] Õ(m) [20] Õ(n27/8) [7] Õ(nm) [15] -
κ′ O(|T | MF(n, m)) same as all-pair O(|T | MF(n, m)) Õ(|T |nω) [13],O(mω) [6] O(|T |nm)
κ O(n7/4m) [11] Õ(nm) [16] O(n9/2) [8] Õ(n2+ω) [13] -

Figure 1.2. The running time for various algorithms for a graph with n vertices and m edges and terminal vertices |T |. The row for κ′ is our
result. MF(n, m) is the running time for a maximum flow on unit capacity directed graph with n vertices and m edges, which is known to be
O(
p

nm) [8]. WHP indicates with high probability bounds for randomized algorithms. ω is the matrix multiplication constant. Õ notation
suppresses poly-logarithmic factors.

Corollary 1.3 Given a graph G = (V, E) and a terminal set T ⊆ V there is a minor H = (V ′, E′) of G such that (i)
T ⊆ V ′ and (ii) V ′ \ T is an independent set in H and (iii) κ′H(u, v) = κ′G(u, v) for all u, v ∈ T. In particular, if T is
an independent set in G then H is a bipartite graph with bipartition (T, V ′ \ T ).

The minor H in the previous corollary is called a reduced graph of G. A graph is reduced if there are no edges
between non-terminals.

Remark A reduced graph G = (V, E) where the terminals T form an independent set can be interpreted as a
hypergraph H = (T, E′). H contains an edge ev for every non-terminal v in G, where ev is the set of neighbors
of v in G. Element-connectivity of terminals T in G is equivalent to hypergraph edge-connectivity in H. st-edge
connectivity on hypergraphs are defined the same way as graphs : the maximum number of edge disjoint st-paths.

Our Results: In this paper we revisit Theorem 1.2 and Corollary 1.3 from two related view points. The proofs of
Theorems 1.1 and 1.2 use elementary arguments on flows and cuts in graphs. We obtain an alternative proof of
Theorem 1.2 using submodularity and supermodularity property of setpairs. Although these properties have been
used routinely in network design papers that deal with element-connectivity, they have not been applied in the
context of the reduction lemma itself. Second, we examine algorithmic aspects of element-connectivity, and this is
our main contribution. Very basic questions have not been explored in contrast to substantial literature on edge
and vertex connectivity. For instance, how fast can κ′G(T ) be computed? How fast can the graph H promised by
Corollary 1.3 be computed? We obtain several results which are summarized in Fig. 1.2. In particular, given a
graph on n nodes with m edges we obtain an algorithm that outputs the reduced graph for a given set of terminals
T in O(|T |nm) time. The key observation that underlies the algorithms is that a symmetric submodular function
can be defined over the terminal set T that corresponds to the element-connectivity between then. This in turn
allows us to compute and exploit a Gomory-Hu tree for this function.

Applications: Element-connectivity has found important applications in three areas: network design, packing
element-disjoint Steiner trees and forests, and more recently in routing for node-disjoint paths and related
applications (we omit detailed references due to lack of space). Our algorithmic improvements most directly
affect the second application, namely the problem of packing element-disjoint Steiner trees and forests. We briefly
describe the simpler case of packing element-disjoint Steiner trees which was the original motivation for the graph
reduction step [17]. Here we are given a graph G = (V, E) and terminal set T and the goal is to find the maximum
number of Steiner trees for T that are pairwise element-disjoint. It is known that in general graphs one can find
Ω(k/ log |T |) trees where k = κ′G(T ) and there are examples where this bound is tight [4]. In planar graphs one
can find Ω(k) trees [1,3]. Algorithms for these first need to compute k, and then work with the reduced graph.
Computing the reduced graph is the bottleneck and our result thus implies an O(|T |nm)-time algorithm for these
packing problems; the previous bounds is O(k|T |2m2).
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Discussion: There is a vast amount of literature on algorithms for computing edge and vertex connectivity in
graphs, and related problems on flows and cuts. As the table in Fig 1.2 shows, the edge connectivity versions have
faster algorithms and are much better understood. This is not surprising since edge-connectivity has additional
structure that can be exploited, including the existence of a Gomory-Hu tree. In contrast, vertex-connectivity
does not admit even a weaker notion of flow-trees [2]. Element-connectivity is an interesting notion that has
helped bridge edge and vertex connectivity in various applications, and we believe that studying its computational
aspects in more depth is an fruitful direction of research. Our work here can be seen as a first step in exploiting
the basic properties of element-connectivity to obtain faster algorithms. In this context we mention the the
splitting-off operation to preserve edge-connectivity introduced by Lovász [23] and strengthened by Mader [24].
The algorithmic aspects of splitting-off have been exploited in several papers on edge-connectivity including some
recent ones [15,22] and we hope similar ideas may bear fruit for element-connectivity.

2 Preliminaries
A set function f : 2V → R is submodular if for all A, B ⊆ V, f (A) + f (B)≥ f (A∩ B) + f (A∪ B). f is non-negative if
f (A)≥ 0 for all A⊆ V . f is symmetric if f (A) = f (V − A) for all A⊆ V . For a non-negative symmetric submodular
function f : 2V → R, we define the f -connectivity between s, t ∈ V as:

α f (s, t) = min
U⊆V,|U∩{s,t}|=1

f (U). (1)

Note that α f (s, t) = α f (t, s) for symmetric f . A capacitated spanning tree (R, c) on V is called a Gomory-Hu
tree (cut tree) of f if for all st ∈ E(R), f (A) = α f (s, t) = c(st), where A is a component of R− st. α f (s, t) for all
s, t ∈ V can be read off from the Gomory-Hu tree as the smallest capacity on the unique path between s and t. A
Gomory-Hu tree always exists when f is non-negative, symmetric, and submodular (see [25]).

Given an undirected graph G = (V, E), for any W ⊆ V , we denote by δG(W ) the set of edges with exactly one
end point in W . The cut function f , defined by f (A) = |δG(A)|, is a symmetric submodular function. For A, B ⊆ V ,
E(A, B) denotes the set of edges with one end point in A and the other in B.

Set pairs, bisubmodularity and bisupermodularity: Given a finite ground set V , a setpair W = (Wt , Wh) is an
ordered pair of disjoint subsets of V ; Wt or Wh may be empty. Let S be the set of all setpairs of V and denote the set
of edges with one endpoint in Wt and the other in Wh by δ(W ) = E(Wt , Wh). Given two setpairs W = (Wt , Wh) and
Y = (Yt , Yh), let W ⊗ Y denote the setpair (Wt ∪ Yt , Wh ∩ Yh), and let W ⊕ Y denote the setpair (Wt ∩ Yt , Wh ∪ Yh).
Additionally, we define (Wt , Wh) = (Wh, Wt). Note that δ(W ) = δ(W ) for an undirected graph and W ⊗ Y =W ⊕Y .

A function f : S→ R is called bisubmodular if f (W ) + f (Y ) ≥ f (W ⊗ Y ) + f (W ⊕ Y ) for any two setpairs
W and Y . For bisupermodular and bimodular functions, we change ≥ to ≤ and = respectively. f is symmetric if
f (W ) = f (W ) for all W ∈ S.

Definition Given a ground set V , a non-negative function g on S is called skew-bisupermodular if for any two
setpairs W and Y , one of the following holds:

g(W ) + g(Y )≤ g(W ⊗ Y ) + g(W ⊕ Y ) (2)

g(W ) + g(Y )≤ g(W ⊗ Y ) + g(W ⊕ Y ) (3)

3 Element-connectivity and connections to submodularity
It is natural to work with cut-functions that capture element-connectivity. We define a cut function CG : 2T → R+
over the terminals as follows: for U ⊆ T , CG(U) is the minimum number of elements whose removal disconnects U
from T \U in G. To formally define CG(U) we consider vertex tri-partitions (A, Z , B) where U ⊆ A and (T \U) ⊆ B;
among all such tri-partitions the one with minimum |Z |+ |E(A, B)| defines CG(U). Z ∪ E(A, B) is called a cut-set.

Theorem 3.1 (Menger’s theorem for element-connectivity) For a graph G with terminal vertices T , for all s, t ∈
T, κ′G(s, t) =min{CG(U) : U ⊆ T, |U ∩ {s, t}|= 1}.

If T is a independent set in the previous theorem, then the cut-set can be taken to contain no edges.
For our purposes a crucial observation is that CG is a non-negative symmetric submodular function.

Theorem 3.2 Let G be a graph with terminal vertices T . CG is a non-negative symmetric submodular function over T .

The preceding theorem implies that CG admits a Gomory-Hu tree.
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4 Algorithmic aspects of element-connectivity
In this section we describe our algorithmic contributions to element-connectivity. In particular we describe how
the running times in the second row of the table in Fig. 1.2 can be realized. Our main contribution is a faster
algorithm for graph reduction. In the entire section, we are always working with a graph G = (V, E) with n vertices,
m edges and terminal vertices T .
Equivalent directed graph: One view of element-connectivity that greatly helps with computation is to define
a flow problem. One can see that κ′G(s, t) is the maximum s-t-flow in G with unit capacities on the edges and
non-terminal vertices (terminal vertices have no capacity constraint). This prompts us to define a equivalent
directed graph, which we get from applying the standard vertex split operation for a graph when there are vertex
capacities.

Let N = V \ T be the set of non-terminals. Let N− = {v−|v ∈ N} and N+ = {v+|v ∈ N}. The equivalent directed
graph of G, denoted by G̃ = (Ṽ , Ẽ), where Ṽ = N− ∪ N+ ∪ T and the arc set Ẽ is obtained from G as follows:

1. For every v ∈ N , (v−, v+) ∈ Ẽ.

2. For every uv ∈ E where u, v ∈ N , (u+, v−), (v+, u−) ∈ Ẽ.

3. For every uv ∈ E where u ∈ T, v ∈ N , (u, v−), (v+, u) ∈ Ẽ.

4. For every uv ∈ E where u, v ∈ T , (u, v), (v, u) ∈ Ẽ.

All the arcs in G̃ implicitly have unit capacity. Any maximum integral acyclic s-t-flow fst in G̃ corresponds to a
set of maximum element-disjoint s-t-paths in G. Hence we do not distinguish between maximum flows in G̃ and
maximum element-disjoint paths in G. A flow in G̃ contains a vertex v (edge e) in G to mean the corresponding
element-disjoint path contains vertex v (edge e).

Lemma 4.1 λG̃(s, t) = κ′G(s, t) for all s, t ∈ T.

4.1 Computing element-connectivity
Single pair element-connectivity The equivalent directed graph allows us to compute local element-connectivity
by running a single maximum flow on a unit capacity directed graph.

Lemma 4.2 κ′G(s, t) can be computed in O(MF(n, m)) time.

Note that if T = {s, t} then κ′G(s, t) = κG(s, t) and moreover maximum bipartite matching can be reduced to
κG(s, t). Thus, improving the time to compute κ′G(s, t) is not feasible without corresponding improvements to
other classical problems.

All-pair element connectivity To compute κ′G(s, t) for all pairs s, t ∈ T , we can compute the Gomory-Hu tree
that we know exists from Theorem 3.2. Unlike the single-pair case where element-connectivity behaves like
vertex-connectivity, in the all-pair case it is closer to edge-connectivity, and in particular there are at most |T | − 1
distinct element-connectivity values. A Gomory-Hu tree (R, c) representing the all-pair element-connectivities can
be built recursively by solving |T | − 1 minimum element cut computations, which correspond to maximum flow
computations in the equivalent directed graph. Hence all-pair element-connectivity takes |T | − 1 maximum flows.
For dense graphs, if we allow randomization, maximum flow can be solved in Õ(nω) time [13], where ω is the
matrix multiplication constant.

There is an alternative approach for sparse graphs using network coding. Cheung et al.describe a randomized
algorithm that computes the edge-connectivity in a directed graph between every pair of vertices in O(mω) time with
high probability [6]. Since κ′G(s, t) = λG̃(s, t) for all s, t ∈ T , all-pair element-connectivity can also be computed in
O(mω) time with high probability.

Global element connectivity The global element-connectivity κ′G(T) can be easily obtained from the all-pair
problem.

Theorem 4.3 κ′G(T ) can be computed in O(|T | MF(n, m)) time.

A different algorithm that results |T |−1 maximum flows computations can be obtained via an approach similar
to that of Hao-Orlin’s algorithm [14]. We defer the details to full version of the paper. It is a very interesting open
problem to improve the running time for computing κ′G(T ). Global edge-connectivity admits a near-linear time
algorithm [19,20], but global vertex connectivity algorithms are much slower.
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Remark For the special case when G is already a reduced graph, an O(mn) time algorithm exists via the problem
of computing a minimum cut in a hypergraph [21].

4.2 Computing a reduced graph
This section highlights the main result of the paper, an O(|T |nm) time algorithm to find a reduced graph. For G
a graph with terminals T , H is called a reduction of G if it can be obtained from G by a sequence of reduction
operations.

The reduction lemma suggests a simple algorithm: pick any edge incident to two nonterminal vertices, check
which one of the two operations preserves element-connectivity, reduce and repeat. For a graph on n vertices
and m edges, compute all-pair element-connectivity from scratch. The naive scheme when combined with
the non-obvious O(|T | MF(n, m)) algorithm for all-pair case would take O(|T |m MF(n, m)) time. Cheriyan and
Salavatipour [4] described exactly this algorithm where they in fact computed all-pair connectivity using |T |2
max-flow computations; their focus was not in improving the running time. We obtain the following

Theorem 4.4 For a graph G with n vertices, m edges and terminals T , a reduced graph of G can be computed in
O(|T |nm) time.

The two high-level ideas to obtain an improved run-time are the following.

1. The algorithm initially computes and then maintains a Gomory-Hu tree (R, c) for the element-connectivity of
T . For each edge st ∈ E(R) it maintains a corresponding maximum flow between s and t in G̃ as it evolves
with reduction operations.

2. Instead of considering reduction operations on an edge by edge basis in an ad-hoc manner we consider all
edges incident to a non-terminal vertex v and process them as a batch.

The first idea alone would give us a run-time of O(|T |m2). The second idea gives a further improvement to
O(|T |nm).

Reduction by vertex elimination: We call an edge pq between two non-terminals a reducible edge. For a given
non-terminal v let D(v) be the set of all reducible edges incident to v. We say v is active if D(v) 6= ;. An elimination
operation on an active vertex v either contracts an edge in D(v) or removes all edges in D(v). If the graph is not
reduced, there is always an elimination operation that preserves element-connectivity. Indeed, if D(v) cannot be
removed, then consider the edges in D(v) in an arbitrary but fixed sequence and apply the reduction operation.
At some point there is an edge e such that removing it reduces the element-connectivity. By reduction lemma,
we can contract e. An elimination reduces the number of active vertices by at least 1. There can only be O(n)
eliminations. Moreover, crucially, we can implement a vertex elimination operation in the same amount of time as
an edge reduction operation.

Our goal is to decide quickly whether an active vertex v can be eliminated (that is, D(v) can be removed)
and if not which of the edges in D(v) can be contracted. For this purpose we define a weighting of edges of E as
follows. First we order the edges in D(v) arbitrarily as e1, e2, . . . , eh where h = |D(v)|. We define a weight function
w : E→ {1, 2, . . . , h+ 1} where w(ei) = i and w(e) = h+ 1 for all e ∈ E \ D(v).

Given a set of weights ρ on the edges, for each pair (s, t) of terminals we define βρ(s, t) as the maximum
weight a such that the element-connectivity between s and t remains the same even if we remove all edges with
weight less than a. We call βρ(s, t) as the bottleneck weight for (s, t). Suppose we used the weight function as
defined above based on the numbering for D(v) then v can be eliminated iff βw(s, t)> h for all pairs of terminals
(s, t). In fact we can also obtain information on which of the edges in D(v) can be contracted if v cannot be
eliminated. Even further, we need to check only the terminal pairs that correspond to edges of a Gomory-Hu tree
for the element-connectivity of T . This is captured in the following theorem which forms the crux of our algorithm.

Theorem 4.5 Let (R, c) be a Gomory-Hu tree for the element-connectivity of terminal set T in G. Consider an active
non-terminal v and the weight function w and let ` = maxst∈E(R) βw(s, t). Define G′ as G/e` if ` < |D(v)|+ 1 and
G − D(v) otherwise. Then κ′G′(u, v) = κ′G(u, v) for all terminal pairs (u, v).

Proof: Recall that D(v) = {e1, e2, . . . , eh} where h = |D(v)|. Let S = {e1, . . . , e`−1}. Since βw(s, t) ≥ ` for all
st ∈ E(R) it follows that the element-connectivity does not change for any pair st ∈ E(R) if we delete the edges in
S from G. From Lemma 4.8 it follows in fact that the element-connectivity of all pairs remains the same in G − S
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Input: undirected graph G, terminals T
〈〈Preprocessing〉〉
(R, c)← Gomory-Hu tree of CG
for each st ∈ E(R):

fst ← maximum st-flow in G̃
〈〈Sequence of eliminations〉〉
while there exists an active non-terminal vertex v:

w← assign weights to D(v)
for each st ∈ E(R)

compute βw(s, t) in O(m) time using fst
`←min{βw(s, t) | st ∈ E(R)}
if ` > |D(v)|:

G← G − D(v)
else:

G← G/e`
for each st ∈ E(R)

update fst in O(m) time
return G

Figure 4.1. Reduce a graph G with terminal vertices T

as in G. Thus all edges in S are deletable. If ` = h+ 1 then S = D(v) and G′ = G − S and we have the desired
property. If ` ≤ h then there is at least one st ∈ E(R) such that κ′G−S(s, t) = κ′G(s, t) but κ′G−S−e`

(s, t) < κ′G(s, t).
From the reduction lemma applied to G − S we see that e` is not deletable, and hence by the reduction lemma
(G − S)/e` preserves all the element-connectivities of the terminals. This also implies that G/e` preserves all
element-connectivities. �

Computing βw(s, t) is relatively fast if we already have an existing maximum flow from s to t. This is captured
by the lemma below.

Lemma 4.6 Given a maximum s-t-flow fst in G̃, an active non-terminal v and a weighting w, we can find βw(s, t)
and a corresponding flow in O(m) time.

Proof: Consider a maximum s-t flow fst in G̃. In a flow decomposition of fst there is at most one flow path that
uses the non-terminal v. We can find such a flow path in O(m) time and reduce the flow by at most one unit
to obtain a new flow f ′st which does not have any flow through v. Not that f ′st is non-zero only on edges e with
w(e) = |D(v)|+1. If the value of f ′st is the same as that of fst then βw(s, t) = |D(v)|+1 and we are done. Otherwise,
we claim that βw(s, t) = ` iff the maximum bottleneck weight for a path from s to t in the residual graph of f ′st in
G̃ is `. Assuming that the claim is true we can find βw(s, t) by a maximum bottleneck path computation in the
residual graph in O(m) time since the edges are sorted by weight (the algorithm is quite simple but we refer the
reader to [12]).

Now we prove the claim. If there is a path of maximum bottleneck weight ` in the residual graph we can
augment f ′st by one unit to obtain a maximum flow f ′′st that uses only edges with weight ` or greater and hence
βw(s, t) ≥ `. Suppose βw(s, t) = `′. Remove the edges {e1, . . . , e`′−1} from G and their corresponding arcs from
G̃. There is a maximum s-t flow of value κ′G(s, t) in this new graph H. f ′st is a flow of value κ′G(s, t)− 1 in H and
hence there must be an augmenting path in the residual graph of f ′st in H and this augmenting path has bottleneck
weight at least `′ and is also a valid path in residual graph of f ′st in G̃. Thus `≥ `′. Thus βw(s, t) = ` as desired. �

Theorem 4.5 and Lemma 4.6 lead to an algorithm as follows. We initially compute and then maintain a
Gomory-Hu tree (R, c) for CG on the terminals. For each edge st ∈ E(R) we also maintain a maximum flow fst in
the current graph G̃. In each iteration we do an elimination procedure on an active vertex using Theorem 4.5.
Each iteration either reduces the number of active vertices by one or contracts an edge. Thus the number of
iterations is O(n). Algorithm 4.1 gives a formal description. Note that the tree (R, c) does not change throughout
the algorithm but the flows fst for each st ∈ E(R) get updated in each iteration. We need to clarify how we update
these flows, analyze the overall running time, and argue about the correctness of the algorithm.
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Updating the flows: Each elimination changes the graph. The algorithm updates the maximum flows fst for each
st ∈ E(R) to reflect this change. If the new graph is G − D(v), then no flow need updating since the computation
of βw(s, t) already finds a new flow that avoids all edges in D(v). We address the case when we contract an edge
from D(v).

Lemma 4.7 Let G be a graph with m edges with terminals T . Let H = G/e for some reducible edge e. If fst is a
maximum s-t flow in G̃, then we can find f ′st , a maximum s-t-flow in H̃ in O(m) time.

Proof: Let e = pq. We delete flow paths in fst that use p or q. This removes at most 2 unit of flow (since each
non-terminal has unit capacity) and the reduced flow is a valid flow in H̃. In two augmentations we can find a
maximum flow in H̃. Each step can be easily implemented in O(m) time. �

Analysis of running time: The time spent to build the Gomory-Hu tree (R, c) and the initial maximum flows for
each edge st ∈ E(R) take |T | − 1 maximum flow computations. Thus the time for this is O(|T | MF(n, m))

As we argued there are O(n) iterations of the while loop. In each iteration we need to compute βw(st) for each
st ∈ E(R). Lemma 4.6 shows that each such computation can be done in O(m) time using the stored maximum
flow; thus the total time is O(|T |m). Updating the maximum flows also takes O(|T |m) time using Lemma 4.7.
Thus the overall running time for all the iterations of the while loop is O(|T |nm) which dominates the time to
compute the initial Gomory-Hu tree.

Correctness: Theorem 4.5 shows the correctness of the elimination procedure. It remains to argue that the
Gomory-Hu tree (R, c) computed in the preprocessing step remains valid throughout the algorithm as the graph
G changes and gets simplified. A similar idea is used implicitly by Gabow for preserving local edge-connectivity
while applying split-off operations [10]. The following simple lemma gives a justification.

Lemma 4.8 Let (R, c) be a Gomory-Hu tree for CG with terminal vertices T in G. Let H be a reduction of G. If
κ′G(s, t) = κ′H(s, t) for all st ∈ E(R) then (R, c) is also a Gomory-Hu tree for CH .

5 Proof of reduction lemma via setpairs
In this section we give a new proof of Theorem 1.2 via the use of setpairs. We will assume without loss of generality
that T is an independent set by sub-dividing each edge between terminals. First we introduce some functions
over setpairs over the vertex set V . These functions and their properties have been explored in papers on network
design for element connectivity [5,9,18] and in particular we refer the reader to [5] for relevant proofs.

Let S be set of all setpairs over vertex set V of the given graph G. Recall that T is the set of terminals. We
define g,`, f on S as follows. For a set pair W = (Wt , Wh),

g(W ) =max{κ′G(u, v) : u ∈Wt ∩ T, v ∈Wh ∩ T}

Here the max follows the convention max;= 0.

`(W ) = |V −Wt −Wh|

f (W ) = g(W )− `(W )
The lemmas below are known from prior work; see [5,9].

Lemma 5.1 The following properties hold: (i) g is symmetric skew-bisupermodular, (ii) ` is symmetric bimodular,
(iii) f is symmetric skew-bisupermodular, and (iv) |δ(W )| is symmetric bi-submodular.

A setpair W is tight if f (W ) = |δ(W )|. The lemma below follows from skew-bisupermodularity of f and
symmetric bi-submodularity of |δ()|.
Lemma 5.2 (Lemma 3.1 [5]) If W and Y are tight, then one of the following holds:

1. W ⊕ Y and W ⊗ Y are tight.

2. W ⊕ Y and W ⊗ Y are tight.

We are now ready to prove the Reduction Lemma.

Proof: Consider any edge pq between non-terminals and graphs G1 = G − pq and G2 = G \ pq. Suppose
the lemma is false. There must be distinct 1 terminal pairs (s, t) and (x , y) such that κ′G1

(s, t) < κ′G(s, t) and
κ′G2
(x , y)< κ′G(x , y).

1It is not hard to see that for any (s, t), κ′G(s, t) = κ′G1
(s, t) or κ′G(s, t) = κ′G2

(s, t).
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Figure 5.1. (left) κ′G1
(s, t) = κ′G(s, t) when pq is removed. (right) κ′G2

(x , y) = κ′G(x , y) − 1 when pq is contracted. Recall that T is an
independent set.

For the pair (s, t), since the connectivity decreased when pq was deleted, there exists a setpair W such that
s, p ∈Wt , t, q ∈Wh, `(W ) = κ′G(s, t)−1 and δ(W ) = {pq}; see Fig. 5.1. If we delete pq, then V −Wt−Wh becomes
a valid cut-set that separates s and t with smaller value. The cut sets contain only non-terminals because T is an
independent set. For the pair (x , y), since connectivity decreased when pq was contracted, there exists a setpair Y
such that x ∈ Yt , y ∈ Yh, p, q ∈ V − Yt − Yh, `(Y ) = κ′G(x , y) and δ(Y ) = ;; see Fig. 5.1. If we contract pq to form
p′, V − Yt − Yh − p′ becomes a smaller cut-set.

We have f (W ) = g(W )−`(W ) = κ′G(s, t)−(κ′G(s, t)−1) = 1, and f (Y ) = g(Y )−`(Y ) = κ′G(x , y)−κ′G(x , y) = 0.
Because |δ(W )|= 1 and |δ(Y )|= 0, W and Y are tight. We now use Lemma 5.2 to consider two cases.

Suppose W⊕Y and W⊗Y are tight. We have f (W⊕Y ) = |δ(W⊕Y )| and f (W⊗Y ) = |δ(W⊗Y )|. If δ(W⊕Y ) is
not empty, then either δ(W )−{pq} or δ(Y )must not be empty, which cannot be since |δ(W )−pq| = 0 and |δ(Y )| =
0. (We exclude pq from δ(W ) because pq /∈ δ(W ⊕Y ).) Therefore, δ(W ⊕Y ) is empty. Similarly, δ(W ⊗Y )must be
empty. Therefore, f (W )+ f (Y ) = 1+0> 0+0 = f (W⊕Y )+ f (W⊗Y ), which is a contradiction since f is bisupermod-
ular. A similar argument can be applied to the case when W ⊕Y and W ⊗Y are tight by exchanging W with W . �
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