Reconstructing Edge-Disjoint Paths Faster

Chao Xu*

Abstract

For a simple undirected graph with n vertices and m edges, we consider a data structure that given a query of a pair of vertices u, v and an integer $k \ge 1$, it returns k edge-disjoint uv-paths. The data structure takes $\tilde{O}(n^{3.375})$ time to build, using $O(\sqrt{m}n^{1.5}\log n)$ space, and each query takes $O(\sqrt{k}n)$ time, which is optimal and beats the previous query time of $O(kn\alpha(n))$.

1 Introduction

For a simple undirected graph G with n vertices and m edges, we are interested in building a data structure to return k edge-disjoint paths between two vertices. Conforti, Hassin and Ravi [3] demonstrated a data structure that takes $O(n \operatorname{MF}(n,m))$ preprocessing time, uses O(nm) space and queries in $O(kn\alpha(n))$ time, where α is the inverse Ackermann function and $\operatorname{MF}(n,m)$ is the running time for computing a maximum flow in an undirected unit capacity graph with n vertices and m edges.

Our data structure is simple and reaches the optimal query time of $O(\sqrt{k}n)$ while improving the space usage to $O(\sqrt{m}n^{1.5}\log n)$. The query time is optimal as there exist graphs where every k edge-disjoint st-paths uses $\Omega(\sqrt{k}n)$ edges [5].

2 Preliminaries

Throughout the paper, we fix a simple undirected graph G = (V, E) with n vertices and m edges. Denote $\lambda(s, t)$ to be the *local edge-connectivity* between s and t in G, i.e. the maximum number of edge-disjoint paths between s and t. The degree of a vertex is deg v. $\lambda(s, t)$ is bounded above by both deg s and deg t.

For a rooted tree T with root r, the *lowest common ancestor* of two nodes u and v, denoted α_{uv} , is the node farthest away from the root that is contained in both the ru-path and the rv-path. T_{uv} denotes the subtree of T rooted at α_{uv} . For any internal node v, we abuse the notation and say u is a leaf of v if u is a leaf of the subtree rooted at v. A binary tree is *full* if each internal node has two children.

A rooted full binary tree T with weights on the internal nodes is an *ancestor tree* of $U \subseteq V$ if the set of leaves coincides with U and $\lambda(u, v)$ equals the weight of α_{uv} for all $u, v \in U$. An immediate consequence of the definition is $\lambda(u, v) \leq \lambda(x, y)$ for all leaves x, y of T_{uv} . An ancestor tree can be found in $O(|U| \operatorname{MF}(n, m))$ time [2].

3 Previous data structure

We give a quick sketch of the data structure of Conforti et al. The heart of their data structure exploits that edge-disjoint paths are effectively "composable".

Theorem 3.1 (Theorem 3.1 [3]) Given k edge-disjoint uw-paths and k edge-disjoint uv-paths with a total of m edges, a set of k edge-disjoint uv-paths can be found in O(m) time.

Remark For anyone familiar with the original proof would notice it actually obtain the bound $O(m + k^2)$, where k^2 comes from the dummy edges that force a perfect stable matching between the paths. Fortunately, avoiding dummy edges is easy: find any stable matching and match the unmatched paths arbitrarily.

Every k edge-disjoint paths contain O(kn) edges, hence composing k edge-disjoint paths takes O(kn) time. One can construct an auxiliary graph H, such that for each edge uv in H, we precompute the maximum number of edge-disjoint uv-paths in G using any maximum flow algorithm. A query of k edge-disjoint v_1v_1 -paths can be answered by a sequence of composition of k edge-disjoint v_1v_2 -paths, v_2v_3 -paths, ... $v_{l-1}v_l$ -paths, where v_1, \ldots, v_l

^{*}Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. chaoxu3@illinois.edu

is a path in H and $\lambda(v_i, v_{i+1}) \ge k$ for all $i \le l-1$. The total query time is therefore O(knl). By augment a flow equivalent tree with Chazelle's semigroup product structure for free trees [1], it returns a graph H with O(n) edges and at most $O(\alpha(n))$ composition per query. The preprocessing time is $O(|H| \operatorname{MF}(n, m)) = O(n \operatorname{MF}(n, m))$ using O(nm) space, and the query time is $O(kn\alpha(n))$.

4 Data structure

On the high level, our data structure is the same as the previous one: we precompute some edge-disjoint paths, and compose them during query time. The difference is the edge-disjoint paths are short, at most one composition per query and the implementation is a simple binary tree.

4.1 Composition of short edge-disjoint paths

It's easy to find examples where k edge-disjoint paths contain $\Omega(kn)$ edges, even returning the edge-disjoint path itself already exceed our bound. Fortunately, there are always short edge-disjoint paths. A set of k edge-disjoint paths is *short* if it contains at most $2\sqrt{kn}$ edges.

Theorem 4.1 There exist short $\lambda(s,t)$ edge-disjoint st-paths P_{st} , and they can be found in O(MF(n,m)) time. Moreover, the k shortest paths in P_{st} have a total of $O(\sqrt{kn})$ edges for all $k \le \lambda(s,t)$.

Proof: Find any maximum 0-1 st-flow from s to t. There is a O(m) time procedure to decycle the flow and then decompose the flow to unit flows along st-paths. Let P_{st} be the paths in the flow decomposition, then P_{st} fits the requirement. Indeed, any acyclic maximum st-flow in a unit capacity simple graph saturates at most $2\sqrt{\lambda(s,t)}n$ edges [5].

The k shortest paths in P_{st} have total length at most

$$k\frac{2\sqrt{\lambda(s,t)}n}{\lambda(s,t)} = k\frac{2n}{\sqrt{\lambda(s,t)}} \le 2k\frac{n}{\sqrt{k}} = 2\sqrt{k}n.$$

Short edge-disjoint paths are closed under our implementation of composition. Let f_{uv} denote some $\lambda(u,v)$ short edge-disjoint uv-paths. Let $\ell = \min(k,\lambda(u,w),\lambda(w,v))$. The previous two theorems imply Compose(f_{uw},f_{wv},k) in Figure 4.1 returns ℓ short edge-disjoint uv-paths. The algorithm runs in $O(\sqrt{\ell}n)$ time.

Figure 4.1. Compose f_{uw} and f_{wv} .

4.2 Cache paths and queries

The algorithm first finds T, an ancestor tree of V, in O(nMF(n,m)) time [2]. If $k \le \lambda(u,v)$, then there exist k edge-disjoint uw and wv-paths, where w is any leaf of T_{uv} .

For each internal node r of an ancestor tree, we can assign one single leaf w of r called a hub of r, such that for any other leaves u and v, either we have already precomputed edge-disjoint paths for uv, or we can compose edge-disjoint path of uw and wv. It turns out we can assign hubs in a way so we only need to precompute $O(n \log n)$ pairs of edge-disjoint paths.

Let c(u), the *heavier child*, be the child of u in T with larger number of leaves. The heavier child is the root of the larger subtree. If both children have same number of leaves, then c break ties arbitrarily.

Let the *hub* of u be h(u), and defined recursively:

$$h(u) = \begin{cases} u & \text{if } u \text{ is a leaf} \\ h(c(u)) & \text{otherwise.} \end{cases}$$

2

h(u) is always a leaf of u. For every internal node v and each leaf u of v, the data structure saves maximum edge-disjoint h(v)u-paths.

We design a recursive function CacheFlows to satisfy the above requirement. It maintains the invariant that if v is the input, then it saves flow $f_{h(v)u}$ for each u a leaf of v. For an internal node v with children v_1 and v_2 , CacheFlows(v) begins by running both CacheFlows(v_1) and CacheFlows(v_2). Assume v_2 is the heavier child, then $h(v_2) = h(v)$, and $f_{h(v)u}$ is cached for all u a leaf of v_2 . It remains to compute $f_{h(v)u}$ for all u a leaf of v_1 . This can be done by composing $f_{h(v_1)u}$ with $f_{h(v_1)h(v)}$. All $f_{h(v_1)u}$ has been computed due to the last call to CacheFlows(v_1). Finding $f_{h(v_1)h(v)}$ takes a single maximum flow computation. See Figure 4.2.

```
\begin{split} & \langle\!\langle f_{st} \text{ denote a global variable that stores a max st-flow}\rangle \rangle \\ & \underline{\text{CACHEFLOWS}(\nu):} \\ & \text{if } v \text{ is an internal node} \\ & v_1, v_2 \text{ are children of } v, \text{ where } v_2 \text{ is the heavier child} \\ & \text{CACHEFLOWS}(v_1) \\ & \text{CACHEFLOWS}(v_2) \\ & f_{h(v_1)h(v)} \leftarrow \text{MAXIMUMFLOW}(h(v_1), h(v)) \\ & \text{for all leaf } u \text{ of } v_1 \\ & f_{h(v)u} \leftarrow \text{COMPOSE}(f_{h(v_1)u}, f_{h(v_1)h(v)}, \infty) \\ & \text{else} \\ & \text{do nothing} \end{split}
```

Figure 4.2. Cache flows.

Let F be the set of pairs $\{s,t\}$ such that we have cached an st-flow at the end of CACHEFLOW(r), where r is the root of the ancestor tree T. The size of F is an upper bound on the number of times the algorithm applied COMPOSE. Let $\ell(\nu)$ be the number of leaves of the subtree rooted at ν . Applying a standard heavy-path decomposition argument [7], |F| is bounded by

$$\sum_{\nu \text{ an internal node of } T} \ell(\nu) - \ell(c(\nu)) = O(n \log n).$$

In each recursive call of the algorithm, the dominating factor of the running time is the maximum flows and compositions. There are n-1 maximum flow computations each taking O(MF(n,m)) time, and $O(|F|) = O(n \log n)$ compositions each taking O(m) time. The time spent on CACHEFLOWS is $O(n MF(n,m) + mn \log n)$.

Because we cache $O(n \log n)$ flows and each flow uses at most O(m) edges, the number of edges stored is bounded by $O(mn \log n)$. A more careful analysis can produce a stronger bound. For fixed u and v, the number of edges in the flow is $O(\sqrt{\lambda(u,v)}n) = O(\sqrt{\min\{\deg u, \deg v\}}n)$. The total number of edges is

$$\sum_{\{u,v\}\in F} O(\sqrt{\min\{\deg u,\deg v\}}n)$$

For every cached flow f_{st} , s is called a non-hub for f_{st} if s is not the hub of α_{st} . The main observation is that every leaf can partake as a non-hub for $O(\log n)$ cached flows. Indeed, the number of times s occurs as a non-hub equals to the number of non-heavy child in the root to s path, which is $O(\log n)$ [7]. We can charge the space to the vertex that acts as the non-hub. The total space used is therefore.

$$\sum_{\{u,v\}\in F} O(\sqrt{\min\{\deg u,\deg v\}}) \le O(\log n) \sum_{v\in V} \sqrt{\deg v}$$

Using the fact that $\sqrt{\cdot}$ is a concave function,

$$\sum_{v \in V} \sqrt{\deg v} \le \sum_{v \in V} \sqrt{\frac{2m}{n}} = O(\sqrt{mn}).$$

Putting the above together shows the space usage is $O(\sqrt{m}n^{1.5}\log n)$.

When querying vertices u and v for k edge-disjoint paths, the algorithm finds the hub $w = h(\alpha_{uv})$, and return the composition of k shortest edge-disjoint paths of f_{uw} and f_{wv} . The query run time is dominated by the composing procedure. Composing the paths take time proportional to the total number of edges involved, which is $O(\sqrt{k}n)$.

Theorem 4.2 There is a data structure that preprocesses an undirected simple graph G of n vertices and m edges in $O(n(MF(n,m)+m\log n))$ time, use $O(\sqrt{m}n^{1.5}\log n)$ space and answer queries for k edge-disjoint st-paths in $O(\sqrt{k}n)$ time.

Although there is no known non-trivial lower bound for MF(n, m), every known maximum flow algorithm dominates $m \log n$ by at least a polynomial factor. It's safe to assume the preprocessing time is n maximum flows. Using the state of art max flow algorithm by Duan [4], the preprocessing time is $\tilde{O}(n^{3.375})$.

Remark Often one is only interested in edge-disjoint paths between a set of n' terminal vertices $U \subseteq V$. We can find an ancestor tree for U and apply the rest of the algorithm without modification. The preprocessing time becomes $O(n'(\mathrm{MF}(n,m)+m\log n'))$ and the data structure occupies $O(\sqrt{m'n'}n\log n')$ space, where m' is the sum of degree of vertices in U.

If there is an upper bound k_{max} on the query integer k, then all occurrences of m can be replaced by $k_{max}n$ using sparsification [6].

Acknowledgments We like to thank Chandra Chekuri for bringing the problem to our attention, and Hsien-Chih Chang, Jiahui Jiang, Urvashi Khandelwal and Vivek Madan for reading the draft copy.

References

- [1] B. Chazelle. Computing on a free tree via complexity-preserving mappings. *Algorithmica*, 2(1-4):337–361, 1987.
- [2] C. Cheng and T. Hu. Ancestor tree for arbitrary multi-terminal cut functions. *Annals of Operations Research*, 33(3):199–213, 1991.
- [3] M. Conforti, R. Hassin, and R. Ravi. Reconstructing edge-disjoint paths. *Operations Research Letters*, 31(4):273–276, July 2003.
- [4] R. Duan. Breaking the $O(n^{2.5})$ time barrier for undirected unit-capacity maximum flow. In *Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013*, pages 1171–1179, 2013.
- [5] D. R. Karger and M. S. Levine. Finding maximum flows in undirected graphs seems easier than bipartite matching. *Proceedings of the thirtieth annual ACM symposium on Theory of computing STOC '98*, pages 69–78, 1998.
- [6] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. *Algorithmica*, 7(5&6):583–596, 1992.
- [7] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362-391, 1983.