
Reconstructing Edge-Disjoint Paths Faster

Chao Xu∗

Abstract

For a simple undirected graph with n vertices and m edges, we consider a data structure that given a query of
a pair of vertices u, v and an integer k ≥ 1, it returns k edge-disjoint uv-paths. The data structure takes Õ(n3.375)
time to build, using O(

p
mn1.5 log n) space, and each query takes O(

p
kn) time, which is optimal and beats the

previous query time of O(knα(n)).

1 Introduction
For a simple undirected graph G with n vertices and m edges, we are interested in building a data structure to
return k edge-disjoint paths between two vertices. Conforti, Hassin and Ravi [3] demonstrated a data structure
that takes O(n MF(n, m)) preprocessing time, uses O(nm) space and queries in O(knα(n)) time, where α is the
inverse Ackermann function and MF(n, m) is the running time for computing a maximum flow in an undirected
unit capacity graph with n vertices and m edges.

Our data structure is simple and reaches the optimal query time of O(
p

kn) while improving the space usage
to O(

p
mn1.5 log n). The query time is optimal as there exist graphs where every k edge-disjoint st-paths uses

Ω(
p

kn) edges [5].

2 Preliminaries
Throughout the paper, we fix a simple undirected graph G = (V, E) with n vertices and m edges. Denote λ(s, t) to
be the local edge-connectivity between s and t in G, i.e. the maximum number of edge-disjoint paths between s and
t. The degree of a vertex is deg v. λ(s, t) is bounded above by both deg s and deg t.

For a rooted tree T with root r, the lowest common ancestor of two nodes u and v, denoted αuv , is the node
farthest away from the root that is contained in both the ru-path and the rv-path. Tuv denotes the subtree of T
rooted at αuv . For any internal node v, we abuse the notation and say u is a leaf of v if u is a leaf of the subtree
rooted at v. A binary tree is full if each internal node has two children.

A rooted full binary tree T with weights on the internal nodes is an ancestor tree of U ⊆ V if the set of leaves
coincides with U and λ(u, v) equals the weight of αuv for all u, v ∈ U . An immediate consequence of the definition
is λ(u, v)≤ λ(x , y) for all leaves x , y of Tuv . An ancestor tree can be found in O(|U |MF(n, m)) time [2].

3 Previous data structure
We give a quick sketch of the data structure of Conforti et al. The heart of their data structure exploits that
edge-disjoint paths are effectively “composable”.

Theorem 3.1 (Theorem 3.1 [3]) Given k edge-disjoint uw-paths and k edge-disjoint wv-paths with a total of m
edges, a set of k edge-disjoint uv-paths can be found in O(m) time.

Remark For anyone familiar with the original proof would notice it actually obtain the bound O(m+ k2), where
k2 comes from the dummy edges that force a perfect stable matching between the paths. Fortunately, avoiding
dummy edges is easy: find any stable matching and match the unmatched paths arbitrarily.

Every k edge-disjoint paths contain O(kn) edges, hence composing k edge-disjoint paths takes O(kn) time.
One can construct an auxiliary graph H, such that for each edge uv in H, we precompute the maximum number
of edge-disjoint uv-paths in G using any maximum flow algorithm. A query of k edge-disjoint v1vl -paths can be
answered by a sequence of composition of k edge-disjoint v1v2-paths, v2v3-paths, . . . vl−1vl -paths, where v1, . . . , vl

∗Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. chaoxu3@illinois.edu

1

mailto:chaoxu3@illinois.edu

is a path in H and λ(vi , vi+1) ≥ k for all i ≤ l − 1. The total query time is therefore O(knl). By augment a flow
equivalent tree with Chazelle’s semigroup product structure for free trees [1], it returns a graph H with O(n) edges
and at most O(α(n)) composition per query. The preprocessing time is O(|H|MF(n, m)) = O(n MF(n, m)) using
O(nm) space, and the query time is O(knα(n)).

4 Data structure
On the high level, our data structure is the same as the previous one: we precompute some edge-disjoint paths,
and compose them during query time. The difference is the edge-disjoint paths are short, at most one composition
per query and the implementation is a simple binary tree.

4.1 Composition of short edge-disjoint paths
It’s easy to find examples where k edge-disjoint paths contain Ω(kn) edges, even returning the edge-disjoint path
itself already exceed our bound. Fortunately, there are always short edge-disjoint paths. A set of k edge-disjoint
paths is short if it contains at most 2

p
kn edges.

Theorem 4.1 There exist short λ(s, t) edge-disjoint st-paths Pst , and they can be found in O(MF(n, m)) time. Moreover,
the k shortest paths in Pst have a total of O(

p
kn) edges for all k ≤ λ(s, t).

Proof: Find any maximum 0-1 st-flow from s to t. There is a O(m) time procedure to decycle the flow and then
decompose the flow to unit flows along st-paths. Let Pst be the paths in the flow decomposition, then Pst fits the
requirement. Indeed, any acyclic maximum st-flow in a unit capacity simple graph saturates at most 2

p

λ(s, t)n
edges [5].

The k shortest paths in Pst have total length at most

k
2
p

λ(s, t)n
λ(s, t)

= k
2n
p

λ(s, t)
≤ 2k

n
p

k
= 2
p

kn.

�

Short edge-disjoint paths are closed under our implementation of composition. Let fuv denote some λ(u, v) short
edge-disjoint uv-paths. Let ` =min(k,λ(u, w),λ(w, v)). The previous two theorems imply COMPOSE(fuw, fwv , k) in
Figure 4.1 returns ` short edge-disjoint uv-paths. The algorithm runs in O(

p
`n) time.

COMPOSE(fuw, fwv , k):
`←min(k, | fuw|, | fwv |)
puw← ` shortest edge-disjoint paths in fuw

pwv ← ` shortest edge-disjoint paths in fwv

f ′← compose puw and pwv

f ← push a unit of flow on all paths of f ′

Decycle f
return a path decomposition of f

Figure 4.1. Compose fuw and fwv .

4.2 Cache paths and queries
The algorithm first finds T , an ancestor tree of V , in O(n MF(n, m)) time [2]. If k ≤ λ(u, v), then there exist k
edge-disjoint uw and wv-paths, where w is any leaf of Tuv .

For each internal node r of an ancestor tree, we can assign one single leaf w of r called a hub of r, such that
for any other leaves u and v, either we have already precomputed edge-disjoint paths for uv, or we can compose
edge-disjoint path of uw and wv. It turns out we can assign hubs in a way so we only need to precompute O(n log n)
pairs of edge-disjoint paths.

Let c(u), the heavier child, be the child of u in T with larger number of leaves. The heavier child is the root of
the larger subtree. If both children have same number of leaves, then c break ties arbitrarily.

Let the hub of u be h(u), and defined recursively:

h(u) =

¨

u if u is a leaf

h(c(u)) otherwise.

2

h(u) is always a leaf of u. For every internal node v and each leaf u of v, the data structure saves maximum
edge-disjoint h(v)u-paths.

We design a recursive function CACHEFLOWS to satisfy the above requirement. It maintains the invariant
that if v is the input, then it saves flow fh(v)u for each u a leaf of v. For an internal node v with children v1 and
v2, CACHEFLOWS(v) begins by running both CACHEFLOWS(v1) and CACHEFLOWS(v2). Assume v2 is the heavier
child, then h(v2) = h(v), and fh(v)u is cached for all u a leaf of v2. It remains to compute fh(v)u for all u a leaf
of v1. This can be done by composing fh(v1)u with fh(v1)h(v). All fh(v1)u has been computed due to the last call to
CACHEFLOWS(v1). Finding fh(v1)h(v) takes a single maximum flow computation. See Figure 4.2.

〈〈 fst denote a global variable that stores a max st-flow〉〉
CACHEFLOWS(v):

if v is an internal node
v1, v2 are children of v, where v2 is the heavier child
CACHEFLOWS(v1)
CACHEFLOWS(v2)
fh(v1)h(v)←MAXIMUMFLOW(h(v1), h(v))
for all leaf u of v1

fh(v)u← COMPOSE(fh(v1)u, fh(v1)h(v),∞)
else

do nothing

Figure 4.2. Cache flows.

Let F be the set of pairs {s, t} such that we have cached an st-flow at the end of CACHEFLOW(r), where r is the
root of the ancestor tree T . The size of F is an upper bound on the number of times the algorithm applied COMPOSE.
Let `(v) be the number of leaves of the subtree rooted at v. Applying a standard heavy-path decomposition
argument [7], |F | is bounded by

∑

v an internal node of T

`(v)− `(c(v)) = O(n log n).

In each recursive call of the algorithm, the dominating factor of the running time is the maximum flows and
compositions. There are n−1 maximum flow computations each taking O(MF(n, m)) time, and O(|F |) = O(n log n)
compositions each taking O(m) time. The time spent on CACHEFLOWS is O(n MF(n, m) +mn log n).

Because we cache O(n log n) flows and each flow uses at most O(m) edges, the number of edges stored is
bounded by O(mn log n). A more careful analysis can produce a stronger bound. For fixed u and v, the number of
edges in the flow is O(

p

λ(u, v)n) = O(
p

min{deg u, deg v}n). The total number of edges is
∑

{u,v}∈F

O(
Æ

min{deg u, deg v}n)

For every cached flow fst , s is called a non-hub for fst if s is not the hub of αst . The main observation is that
every leaf can partake as a non-hub for O(log n) cached flows. Indeed, the number of times s occurs as a non-hub
equals to the number of non-heavy child in the root to s path, which is O(log n) [7]. We can charge the space to
the vertex that acts as the non-hub. The total space used is therefore.

∑

{u,v}∈F

O(
Æ

min{deg u, deg v})≤ O(log n)
∑

v∈V

Æ

deg v

Using the fact that
p
· is a concave function,

∑

v∈V

Æ

deg v ≤
∑

v∈V

√

√2m
n
= O(

p
mn).

Putting the above together shows the space usage is O(
p

mn1.5 log n).
When querying vertices u and v for k edge-disjoint paths, the algorithm finds the hub w= h(αuv), and return

the composition of k shortest edge-disjoint paths of fuw and fwv . The query run time is dominated by the composing
procedure. Composing the paths take time proportional to the total number of edges involved, which is O(

p
kn).

3

Theorem 4.2 There is a data structure that preprocesses an undirected simple graph G of n vertices and m edges in
O(n(MF(n, m)+m log n)) time, use O(

p
mn1.5 log n) space and answer queries for k edge-disjoint st-paths in O(

p
kn)

time.

Although there is no known non-trivial lower bound for MF(n, m), every known maximum flow algorithm
dominates m log n by at least a polynomial factor. It’s safe to assume the preprocessing time is n maximum flows.
Using the state of art max flow algorithm by Duan [4], the preprocessing time is Õ(n3.375).

Remark Often one is only interested in edge-disjoint paths between a set of n′ terminal vertices U ⊆ V . We can
find an ancestor tree for U and apply the rest of the algorithm without modification. The preprocessing time
becomes O(n′(MF(n, m) +m log n′)) and the data structure occupies O(

p
m′n′n log n′) space, where m′ is the sum

of degree of vertices in U .
If there is an upper bound kmax on the query integer k, then all occurrences of m can be replaced by kmax n

using sparsification [6].

Acknowledgments We like to thank Chandra Chekuri for bringing the problem to our attention, and Hsien-Chih
Chang, Jiahui Jiang, Urvashi Khandelwal and Vivek Madan for reading the draft copy.

References
[1] B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica, 2(1-4):337–361,

1987.

[2] C. Cheng and T. Hu. Ancestor tree for arbitrary multi-terminal cut functions. Annals of Operations Research,
33(3):199–213, 1991.

[3] M. Conforti, R. Hassin, and R. Ravi. Reconstructing edge-disjoint paths. Operations Research Letters, 31(4):273–
276, July 2003.

[4] R. Duan. Breaking the O(n2.5) time barrier for undirected unit-capacity maximum flow. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1171–1179, 2013.

[5] D. R. Karger and M. S. Levine. Finding maximum flows in undirected graphs seems easier than bipartite
matching. Proceedings of the thirtieth annual ACM symposium on Theory of computing - STOC ’98, pages 69–78,
1998.

[6] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning subgraph of a
k-connected graph. Algorithmica, 7(5&6):583–596, 1992.

[7] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362–391, 1983.

4

	Introduction
	Preliminaries
	Previous data structure
	Data structure
	Composition of short edge-disjoint paths
	Cache paths and queries

