Reconstructing Edge-Disjoint Paths Faster

Chao Xu*

Abstract

For a simple undirected graph with n vertices and m edges, we consider a data structure that given a query of
a pair of vertices u, v and an integer k > 1, it returns k edge-disjoint uv-paths. The data structure takes O(n>%7%)
time to build, using O(y/mn*®logn) space, and each query takes O(+kn) time, which is optimal and beats the
previous query time of O(kna(n)).

1 Introduction

For a simple undirected graph G with n vertices and m edges, we are interested in building a data structure to
return k edge-disjoint paths between two vertices. Conforti, Hassin and Ravi [3] demonstrated a data structure
that takes O(n MF(n, m)) preprocessing time, uses O(nm) space and queries in O(kna(n)) time, where «a is the
inverse Ackermann function and MF(n, m) is the running time for computing a maximum flow in an undirected
unit capacity graph with n vertices and m edges.

Our data structure is simple and reaches the optimal query time of O(v/'kn) while improving the space usage
to O(ymn'logn). The query time is optimal as there exist graphs where every k edge-disjoint st-paths uses
Q(Vkn) edges [5].

2 Preliminaries

Throughout the paper, we fix a simple undirected graph G = (V, E) with n vertices and m edges. Denote A(s, t) to
be the local edge-connectivity between s and t in G, i.e. the maximum number of edge-disjoint paths between s and
t. The degree of a vertex is degv. A(s, t) is bounded above by both degs and degt.

For a rooted tree T with root r, the lowest common ancestor of two nodes u and v, denoted a,,, is the node
farthest away from the root that is contained in both the ru-path and the rv-path. T,, denotes the subtree of T
rooted at a,,. For any internal node v, we abuse the notation and say u is a leaf of v if u is a leaf of the subtree
rooted at v. A binary tree is full if each internal node has two children.

A rooted full binary tree T with weights on the internal nodes is an ancestor tree of U C V if the set of leaves
coincides with U and A(u, v) equals the weight of a,, for all u,v € U. An immediate consequence of the definition
is A(u,v) < A(x, y) for all leaves x, y of T,,. An ancestor tree can be found in O(|U| MF(n, m)) time [2].

3 Previous data structure

We give a quick sketch of the data structure of Conforti et al. The heart of their data structure exploits that
edge-disjoint paths are effectively “composable”.

Theorem 3.1 (Theorem 3.1 [3]) Given k edge-disjoint uw-paths and k edge-disjoint wv-paths with a total of m
edges, a set of k edge-disjoint uv-paths can be found in O(m) time.

Remark For anyone familiar with the original proof would notice it actually obtain the bound O(m + k2), where
k? comes from the dummy edges that force a perfect stable matching between the paths. Fortunately, avoiding
dummy edges is easy: find any stable matching and match the unmatched paths arbitrarily.

Every k edge-disjoint paths contain O(kn) edges, hence composing k edge-disjoint paths takes O(kn) time.
One can construct an auxiliary graph H, such that for each edge uv in H, we precompute the maximum number
of edge-disjoint uv-paths in G using any maximum flow algorithm. A query of k edge-disjoint v, v;-paths can be
answered by a sequence of composition of k edge-disjoint v;v,-paths, v,vs-paths, ...v,_;v;-paths, where vy,...,v;

*Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. chaoxu3@illinois.edu

mailto:chaoxu3@illinois.edu

is a path in H and A(v;,v;;;) = k for all i <1 —1. The total query time is therefore O(knl). By augment a flow
equivalent tree with Chazelle’s semigroup product structure for free trees [1], it returns a graph H with O(n) edges
and at most O(a(n)) composition per query. The preprocessing time is O(|H| MF(n, m)) = O(n MF(n, m)) using
O(nm) space, and the query time is O(kna(n)).

4 Data structure

On the high level, our data structure is the same as the previous one: we precompute some edge-disjoint paths,
and compose them during query time. The difference is the edge-disjoint paths are short, at most one composition
per query and the implementation is a simple binary tree.

4.1 Composition of short edge-disjoint paths

It’s easy to find examples where k edge-disjoint paths contain £2(kn) edges, even returning the edge-disjoint path
itself already exceed our bound. Fortunately, there are always short edge-disjoint paths. A set of k edge-disjoint
paths is short if it contains at most 2v/kn edges.

Theorem 4.1 There exist short A(s, t) edge-disjoint st-paths P,,, and they can be found in O(MF(n, m)) time. Moreover,
the k shortest paths in P,, have a total of O(v'kn) edges for all k < A(s, t).

Proof: Find any maximum 0-1 st-flow from s to t. There is a O(m) time procedure to decycle the flow and then
decompose the flow to unit flows along st-paths. Let P,, be the paths in the flow decomposition, then P;, fits the
requirement. Indeed, any acyclic maximum st-flow in a unit capacity simple graph saturates at most 24/ A(s, t)n
edges [5].

The k shortest paths in P, have total length at most

k2\/7t(s,t n k 2n
AMst) JAG, 0

n
< 2k— =2+/kn.
vk

O

Short edge-disjoint paths are closed under our implementation of composition. Let f,,, denote some A(u, v) short
edge-disjoint uv-paths. Let £ = min(k, A(u, w), A(w, v)). The previous two theorems imply COMPOSE(f,,,, fi,v, k) in
Figure 4.1 returns ¢ short edge-disjoint uv-paths. The algorithm runs in O(+v/£n) time.

COMPOSE(f,; fu, K):
¢ —min(k, |l [fun])
Duw < € shortest edge-disjoint paths in f,,,
Dy < £ shortest edge-disjoint paths in f,,
f’ « compose p,,, and p,,,
f « push a unit of flow on all paths of f’
Decycle f
return a path decomposition of f

Figure 4.1. Compose f,,, and f,,,.

4.2 Cache paths and queries

The algorithm first finds T, an ancestor tree of V, in O(n MF(n,m)) time [2]. If k < A(u, v), then there exist k
edge-disjoint uw and wv-paths, where w is any leaf of T,,,,.

For each internal node r of an ancestor tree, we can assign one single leaf w of r called a hub of r, such that
for any other leaves u and v, either we have already precomputed edge-disjoint paths for uv, or we can compose
edge-disjoint path of uw and wv. It turns out we can assign hubs in a way so we only need to precompute O(nlogn)
pairs of edge-disjoint paths.

Let c(u), the heavier child, be the child of u in T with larger number of leaves. The heavier child is the root of
the larger subtree. If both children have same number of leaves, then ¢ break ties arbitrarily.

Let the hub of u be h(u), and defined recursively:

u if u is a leaf
h(u) = .
h(c(u)) otherwise.

h(u) is always a leaf of u. For every internal node v and each leaf u of v, the data structure saves maximum
edge-disjoint h(v)u-paths.

We design a recursive function CACHEFLOWS to satisfy the above requirement. It maintains the invariant
that if v is the input, then it saves flow fy,, for each u a leaf of v. For an internal node v with children v, and
vy, CACHEFLOWS(v) begins by running both CACHEFLOWS(v;) and CACHEFLOWS(v,). Assume v, is the heavier
child, then h(v,) = h(v), and fj,y, is cached for all u a leaf of v,. It remains to compute fj,), for all u a leaf
of v;. This can be done by composing f,,y, With fi(y)a(v)- All fy,), has been computed due to the last call to
CACHEFLOWS(v;). Finding fi,(y,)u(v) takes a single maximum flow computation. See Figure 4.2.

({f, denote a global variable that stores a max st-flow))
CACHEFLOWS(v):
if v is an internal node
vy, v, are children of v, where v, is the heavier child
CACHEFLOWS(v;)
CACHEFLOWS(v,)
Frupn) < MAXIMUMFLOW(h(v,), h(v))
for all leaf u of v;
Suev < COMPOSE(fy(y, yus fingvy h(vy» ©°)
else
do nothing

Figure 4.2. Cache flows.

Let F be the set of pairs {s, t} such that we have cached an st-flow at the end of CACHEFLOW(r), where r is the
root of the ancestor tree T. The size of F is an upper bound on the number of times the algorithm applied COMPOSE.
Let £(v) be the number of leaves of the subtree rooted at v. Applying a standard heavy-path decomposition
argument [7], |F| is bounded by

>, L(v)—L(c(v)) = O(nlogn).
v an internal node of T
In each recursive call of the algorithm, the dominating factor of the running time is the maximum flows and
compositions. There are n— 1 maximum flow computations each taking O(MF(n, m)) time, and O(|F|) = O(nlogn)
compositions each taking O(m) time. The time spent on CACHEFLOWS is O(n MF(n, m) + mnlogn).
Because we cache O(nlogn) flows and each flow uses at most O(m) edges, the number of edges stored is

bounded by O(mnlogn). A more careful analysis can produce a stronger bound. For fixed u and v, the number of
edges in the flow is O(4/A(u, v)n) = O(4/min{degu, deg v}n). The total number of edges is

Z o] \/min{deg u,degvin)
{u,v}eF
For every cached flow f,,, s is called a non-hub for f;, if s is not the hub of a,,. The main observation is that
every leaf can partake as a non-hub for O(logn) cached flows. Indeed, the number of times s occurs as a non-hub
equals to the number of non-heavy child in the root to s path, which is O(logn) [7]. We can charge the space to
the vertex that acts as the non-hub. The total space used is therefore.

Z O(\/min{degu, degv}) < O(logn)z v/ degv

{u,v}eF vev

Using the fact that 4/~ is a concave function,

Z v/ degv < Z @= O(v'mn).

vev vev

Putting the above together shows the space usage is O(y/mn'®logn).

When querying vertices u and v for k edge-disjoint paths, the algorithm finds the hub w = h(a,,), and return
the composition of k shortest edge-disjoint paths of f,,,, and f,,,. The query run time is dominated by the composing
procedure. Composing the paths take time proportional to the total number of edges involved, which is O(v'kn).

Theorem 4.2 There is a data structure that preprocesses an undirected simple graph G of n vertices and m edges in
O(n(MF(n, m) + mlogn)) time, use O(y/mn">logn) space and answer queries for k edge-disjoint st-paths in O(v'kn)
time.

Although there is no known non-trivial lower bound for MF(n, m), every known maximum flow algorithm
dominates mlogn by at least a polynomial factor. It’s safe to assume the preprocessing time is n maximum flows.
Using the state of art max flow algorithm by Duan [4], the preprocessing time is O(n>37°).

Remark Often one is only interested in edge-disjoint paths between a set of n’ terminal vertices U C V. We can
find an ancestor tree for U and apply the rest of the algorithm without modification. The preprocessing time
becomes O(n’(MF(n, m) + mlogn’)) and the data structure occupies O(v'm’n’nlogn’) space, where m’ is the sum
of degree of vertices in U.

If there is an upper bound k,,,, on the query integer k, then all occurrences of m can be replaced by k,,,,n
using sparsification [6].

Acknowledgments We like to thank Chandra Chekuri for bringing the problem to our attention, and Hsien-Chih
Chang, Jiahui Jiang, Urvashi Khandelwal and Vivek Madan for reading the draft copy.

References

[1] B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica, 2(1-4):337-361,
1987.

[2] C. Cheng and T. Hu. Ancestor tree for arbitrary multi-terminal cut functions. Annals of Operations Research,
33(3):199-213, 1991.

[3] M. Conforti, R. Hassin, and R. Ravi. Reconstructing edge-disjoint paths. Operations Research Letters, 31(4):273-
276, July 2003.

[4] R. Duan. Breaking the O(n?®) time barrier for undirected unit-capacity maximum flow. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1171-1179, 2013.

[5] D. R. Karger and M. S. Levine. Finding maximum flows in undirected graphs seems easier than bipartite
matching. Proceedings of the thirtieth annual ACM symposium on Theory of computing - STOC 98, pages 69-78,
1998.

[6] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning subgraph of a
k-connected graph. Algorithmica, 7(5&6):583-596, 1992.

[7] D.D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362-391, 1983.

	Introduction
	Preliminaries
	Previous data structure
	Data structure
	Composition of short edge-disjoint paths
	Cache paths and queries

