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Abstract8

A subset B of the ring Zn is referred to as a ℓ-covering set if {ab (mod n) | 0 ≤ a ≤ ℓ, b ∈ B} = Zn.9

We show that there exists a ℓ-covering set of Zn of size O( n
ℓ

log n) for all n and ℓ, and how to10

construct such a set. We also provide examples where any ℓ-covering set must have a size of11

Ω( n
ℓ

log n
log log n

). The proof employs a refined bound for the relative totient function obtained through12

sieve theory and the existence of a large divisor with a linear divisor sum. The result can be used to13

simplify a modular subset sum algorithm.14
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1 Introduction18

For two sets A, B ⊆ Zn, we let A · B = {ab (mod n) | a ∈ A, b ∈ B}. Let [ℓ] = {0, . . . , ℓ} be19

the natural numbers no larger than ℓ. A subset B of the ring Zn is termed a ℓ-covering set20

if (Zn ∩ [ℓ]) · B = Zn. Let f(n, ℓ) be the size of the smallest ℓ-covering set of Zn, we are21

interested in finding f(n, ℓ). Equivalently, we can define a segment of slope i and length ℓ to22

be {ix (mod n) | x ∈ Zn ∩ [ℓ]}, and we are interested in finding a set of segments that covers23

Zn.24

ℓ-coverings were used for flash storage related problems, including covering codes [12,25

13, 11], rewriting schemes[9]. It also has been generalized to Zd
n [11]. An ℓ-covering is also26

useful in algorithm design. Since we can compress a segment by dividing everything by its27

slope, an algorithm, where the running time depends on the size of the numbers in the input,28

can be improved. An implicit but involved application of ℓ-covering was crucial for the first29

significant improvement to the modular subset sum problem [14].30

The major question lies in finding the appropriate bound for f(n, ℓ). The trivial lower31

bound is f(n, ℓ) ≥ n
ℓ . On the upper bound of f(n, ℓ), there are multiple studies where ℓ is a32

small constant, or n has lots of structure, like being a prime number or maintaining certain33

divisibility conditions [12, 13, 11]. A fully general non-trivial upper bound for all ℓ and n was34

first established by Chen et.al., which shows an explicit construction of an O( n(log n)ω(n)

ℓ1/2 ) size35

ℓ-covering set. They also showed f(n, ℓ) ≤ n1+o(1)

ℓ1/2 using the fourth moment of character sums,36

but without providing a construction [5]. In the same article, the authors show f(p, ℓ) = O( p
ℓ )37

for prime p with an explicit construction. Koiliaris and Xu improved the result by a factor38

of
√

ℓ for general n and ℓ using basic number theory, and showed f(n, ℓ) = n1+o(1)

ℓ [14]. An39

ℓ-covering set of equivalent size can also be found in O(nℓ) time. The value hidden in o(1)40

could be as large as Ω( 1
log log n ), so it is relatively far from the lower bound. However, a closer41

examination of their result reveals that f(n, ℓ) = O( n
ℓ log n log log n) if ℓ is neither too large42
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Size of ℓ-covering Construction Time

Chen et. al. [5] O
(

n(log n)ω(n)

ℓ1/2

)
Õ
(

n(log n)ω(n)

ℓ1/2

)
Chen et. al. [5] n1+o(1)

ℓ1/2 Non-constructive

Koiliaris and Xu [14] n1+o(1)

ℓ
O(nℓ)

Theorem 9 O( n
ℓ

log n) O(nℓ)

Theorem 11 O( n
ℓ

log n log log n) Õ( n
ℓ

) + no(1) randomized

Figure 1 Comparison of results for ℓ-covering for arbitrary n and ℓ. ω(n) is the number of distinct
prime factors of n.

nor too small. That is, if t ≤ ℓ ≤ n/t, where t = nΩ( 1
log log n ). See Figure 1 for comparison of43

the results.44

The covering problem can be considered in a more general context. For any semigroup45

(M, ⋄), define A ⋄ B = {a ⋄ b | a ∈ A, b ∈ B}. For A ⊆ M , we are interested in finding a46

small B such that A ⋄ B = M . Here B is called an A-covering. The ℓ-covering problem is47

the special case where the semigroup is (Zn, ·), and A = Zn ∩ [ℓ]. When M is a group, it48

was studied in [3]. In particular, they showed for a finite group (G, ⋄) and any A ⊆ G, there49

exists an A-covering of size no larger than |G|
|A| (log |A| + 1). We wish to emphasize that our50

problem is based on the semigroup (Zn, ·), which is not a group, and therefore, can exhibit51

very different behaviors. For example, if A consists of only elements divisible by 2 and n is52

divisible by 2, then no A-covering of (Zn, ·) exists. It was shown that there exists A that is a53

set of ℓ consecutive integers, any A-covering of (Zn, ·) has Ω(n
ℓ log n) size [17]. Hence, the54

choice of the set Zn ∩ [ℓ] is very special, as there are examples where ℓ-covering has O(n
ℓ )55

size [5]. For reasons apparent in later part of the paper, we use ℓ-covering in a semigroup56

(X, ·) to mean a (X ∩ [ℓ])-covering. In the pursuit of our main theorem, another instance of57

the covering problem emerges, which might be of independent interest. Let the semigroup58

be (Dn, ⊙), where Dn is the set of divisors of n, and a ⊙ b = gcd(ab, n), where gcd is the59

greatest common divisor function. We are interested in finding a s-covering set of Dn for60

some s < n.61

1.1 Our Contributions62

1. We demonstrate that f(n, ℓ) = O(n
ℓ log n), and a slightly larger ℓ-covering of size63

O( n
ℓ log n log log n) can be found in Õ( n

ℓ ) + no(1) time.64

2. We establish the existence of a constant c > 0 and an infinite number of n and ℓ pairs,65

such that f(n, ℓ) ≥ c n
ℓ

log n
log log n .66

As an application, we show the new result simplifies the algorithm of [14] for modular67

subset sums. In addition to these main contributions, we also offer some intriguing auxiliary68

results in number theory. These include a more precise bound for the relative totient function,69

as well as the discovery of a large divisor accompanied by a linear divisor sum.70

1.2 Technical overview71

Our approach is similar to the one of Koiliaris and Xu [14]. We briefly describe their approach.72

Recall Zn is the set of integers modulo n. We further define Zn,d = {x | gcd(x, n) = d, x ∈ Zn},73
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and Z∗
n = Zn,1. Let Sℓ(X) be the set of segments of length ℓ and slope in X. Their main74

idea is to convert the covering problem over the semigroup (Zn, ·) to covering problems75

over the group (Z∗
n/d, ·) for all d ∈ Dn. Since Zn,d forms a partition of Zn, one can reason76

about covering them individually. That is, covering Zn,d by Sℓ(Zn,d). This is equivalent to77

covering Z∗
n/d with Sℓ(Z∗

n/d), and then lifting to a cover in Zn,d by multiplying everything by78

d. Hence, now we only have to work with covering problems over (Z∗
n/d, ·) for all d and n ≥ 2,79

all of which are groups. The covering results for groups can be readily applied [3]. Once we80

find the covering for each individual (Z∗
n/d, ·), we take their union, and obtain an ℓ-covering.81

The approach was sufficient to obtain f(n, ℓ) = O(n
ℓ log n log log n) if ℓ is neither too82

small nor too large. However, their result suffers when ℓ is extreme in one of the two ways.83

1. ℓ = n1−o( 1
log log n ): Any covering obtained would have size at least the number of divisors84

of n, which in the worst case can be nΩ( 1
log log n ), and dominates n

ℓ .85

2. ℓ = no( 1
log log n ): If we are working on covering Z∗

n, we need to know |Z∗
n ∩ [ℓ]|, also known86

as φ(n, ℓ). Previously, the estimate for φ(n, ℓ) was insufficient when ℓ is small.87

Our approach can extend the applicable range to all ℓ, and also eliminates the extra88

log log n factor. There are two steps: First, we improve the estimate for φ(n, ℓ). This89

improvement alone is sufficient to handle the cases when ℓ is relatively small compared to n.90

Second, we show that, roughly, a small ℓ′-covering of Dn with some additional nice properties91

implies a small ℓ-covering of Zn, where ℓ′ is some number not too small compared to ℓ. This92

change can shave off the log log n factor.93

Organization94

The paper is organized as follows. Section 2 contains the necessary number theory background.95

Section 3 describes some number theoretical results on bounding φ(n, ℓ), finding a large96

divisor of n with a linear divisor sum, and covering of Dn. Section 4 proves the main theorem97

that f(n, ℓ) = O( n
ℓ log n), discusses its construction, and also provides a lower bound.98

2 Preliminaries99

This paper utilizes a few simple algorithmic concepts, but our methods are primarily analytical.100

Therefore, we have reserved some space in the preliminaries to set the scene. x Let X be a101

collection of subsets in some universe set U . A set cover of U is a subcollection of X whose102

union covers U . Formally, X ′ is a set cover of U if X ′ ⊆ X such that U =
⋃

X∈X ′ X. The set103

cover problem is the computational problem of finding a set cover of minimum cardinality.104

All multiplications in Zn are modulo n, and henceforth we will omit the " (mod n)"105

notation. A set of the form {ix | x ∈ Zn ∩ [ℓ]} is called a segment of length ℓ with slope i. Note106

that a segment of length ℓ might contain fewer than ℓ elements. Recall that Sℓ(X) represents107

the collection of segments of length ℓ with slopes in X, namely {{ix | x ∈ Zn ∩ [ℓ]} | i ∈ X}.108

Thus, finding an ℓ-covering is equivalent to the set cover problem where the universe is Zn109

and the collection of subsets is Sℓ(Zn).110

There are well-known bounds relating the size of a set cover to the frequency of each111

element in the cover.112

▶ Theorem 1 ([15, 19]). Let there be a collection of t sets each with size at most a, and each113

element of the universe is covered by at least b of the sets, then there exists a subcollection of114

O( t
b log a) sets that covers the universe.115

CVIT 2016
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The above theorem serves as our primary combinatorial tool for bounding the size of a116

set cover. To achieve a cover of the desired size, we find the greedy algorithm to be sufficient.117

It is worth noting that the group covering theorem for finite groups, as presented in [3], is a118

direct application of this principle.119

In this context, the base of the log is e. To avoid dealing with negative values, we define120

log(x) as max(log(x), 1). We use Õ(f(n)), the soft O, as shorthand for O(f(n) polylog n).121

2.1 Number theory122

We utilize some standard notations and bounds, which can be found in various analytic123

number theory textbooks, for example, [7]. Recall that Zn represents the set of integers124

modulo n, Zn,d = {x| gcd(x, n) = d, x ∈ Zn}, and Z∗
n = Zn,1. Z∗

n is the set of numbers in125

Zn that are relatively prime to n. The notation m|n means m is a divisor of n. π(n), the126

prime counting function, is the number of primes no larger than n, and π(n) = Θ( n
log n ). The127

Euler totient function, denoted as φ(n), is defined as φ(n) = |Z∗
n| = n

∏
p|n,p prime

(
1 − 1

p

)
,128

and is bounded by Ω( n
log log n ). ω(n), the number of distinct prime factors of n, has the129

relation ω(n) = O( log n
log log n ). d(n), the divisor function, is the number of divisors of n, and130

d(n) = nO( 1
log log n ) = no(1). σ(n), the divisor sum function, is the sum of divisors of n, and131

σ(n) ≤ n2

φ(n) . This also implies σ(n) = O(n log log n). The sum of reciprocal of primes no132

larger than n is
∑

p≤n,p prime
1
p = O(log log n).133

Our argument is centered around the relative totient function, denoted as φ(n, ℓ) =134

|Z∗
n ∩ [ℓ]|.135

▶ Theorem 2. Consider integers 0 ≤ ℓ < n, y ∈ Zn,d. The number of solutions x ∈ Z∗
n such136

that xb ≡ y (mod n) for some b ≤ ℓ is137

φ( n
d ,
⌊

ℓ
d

⌋
)

φ( n
d ) φ(n).138

Proof. See Appendix B. ◀139

We also need Brun’s sieve from sieve theory, see Appendix A.140

3 Number theoretical results141

This section we show some number theoretical bounds. The results are technical. The reader142

can skip the proofs of this section on first view.143

3.1 Estimate for relative totient function144

This section proves a good estimate of φ(n, ℓ) using sieve theory, the direction was hinted in145

[8].146

▶ Theorem 3. There exists positive constant c, such that147

φ(n, ℓ) =
{

Ω( ℓ
n φ(n)) if ℓ > c log5 n

Ω( ℓ
log ℓ ) if ℓ > c log n

148
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Proof. Case 1. ℓ > c log5 n.149

Let z be a value to be determined later. Let n0 =
∏

p|n,p<z p. Observe that φ(n, ℓ) and150

φ(n0, ℓ) are close. Indeed, for some c1 > 0,151

|φ(n, ℓ) − φ(n0, ℓ)| =

∣∣∣∣∣∣
∑

0≤m≤ℓ,(m,n0)=1

1 −
∑

0≤m≤ℓ,(m,n)=1

1

∣∣∣∣∣∣
≤

∑
1≤m≤ℓ:p|n,p≥z,p|m

1

≤
∑

p|n,p≥z

ℓ

p

≤ ℓω(n)
z

≤ c1ℓ log n

z log log n

152

Now, we want to estimate φ(n0, ℓ) using the Brun’s sieve. The notations are from the153

theorem. Let A = {1, 2, . . . , ℓ}, P = {p : p|n}, X = |A| = ℓ, the multiplicative function γ,154

where γ(p) = 1 if p ∈ P otherwise 0.155

Condition (1). For any squarefree d composed of primes of P,156

|Rd| =
∣∣∣∣⌊ ℓ

p

⌋
− ℓ

p

∣∣∣∣ ≤ 1 = γ(d).157

Condition (2). We choose A1 = 2, therefore 0 ≤ γ(p)
p = 1

p ≤ 1
2 = 1 − 1

A1
.158

Condition (3). Because R(x) :=
∑

p<x
log p

p = log x + O(1) [6], we have159

∑
w≤p<z

γ(p) log p

p
≤

∑
w≤p<z

log p

p
= R(z) − R(w) = log z

w
+ O(1).160

We choose κ = 1 and some A2 large enough to satisfy Condition (3).161

Condition (4). By picking b = 1, λ = 2
9 , b is a positive integer and 0 < 2

9 e11/9 ≈ 0.75 < 1.162

We are ready to bound φ(n0, ℓ). Brun’s sieve shows163

φ(n0, ℓ) = S(A, P, z) ≥ℓ
φ(n0)

n0

(
1 − 2λ2be2λ

1 − λ2e2+2λ
exp((2b + 2) c1

λ log z
)
)

+ O(z2b−1+ 2.01
e2λ/κ−1 )

≥ℓ
φ(n0)

n0

(
1 − 0.3574719 exp( 18c1

log z
)
)

+ O(z4.59170)

164

Which means that there exists some positive constant c2 such that for some small ε > 0,165

φ(n0, ℓ) ≥ ℓ
φ(n0)

n0

(
1 − 2

5 exp( 18c1

log z
)
)

− c2z5−ε.166

We choose some constant z0 such that 2
5 exp( 18c1

log z0
) ≤ 1

2 , if z > z0(we will later make sure167

z > z0), then168

φ(n0, ℓ) ≥ 1
2ℓ

φ(n0)
n0

− c2z5−ε.169

CVIT 2016
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Note if n1|n2, then φ(n1)/n1 ≥ φ(n2)/n2 since φ(n)/n =
∏

p|n(1 − 1/p) and every prime170

factor of n1 is also the prime factor of n2. Therefore,171

φ(n0, ℓ) ≥ 1
2ℓ

φ(n)
n

− c2z5−ε.172

Recall there exists a c3 such that φ(n)
n ≥ c3

log log n ,173

φ(n, ℓ) ≥ φ(n0, ℓ) − c1
ℓ log n

z log log n

≥ 1
2ℓ

φ(n)
n

− c2z5−ε − c1
ℓ log n

z log log n

= 1
4ℓ

φ(n)
n

+ (1
8ℓ

φ(n)
n

− c2z5−ε) + (1
8ℓ

φ(n)
n

− c1
ℓ log n

z log log n
)

≥ 1
4ℓ

φ(n)
n

+ (c3

8
ℓ

log log n
− c2z5−ε) + (c3

8
ℓ

log log n
− c1

ℓ log n

z log log n
).

174

By picking z = 8c1
c3

log n = C log n, we obtain c1
ℓ log n

z log log n ≤ c3
8

ℓ
log log n . By picking175

c = 8 c2
c3

C5 and ℓ ≥ 8c2
c3

C5 log5−ε n log log n = c log5−ε n log log n, we obtain cz5−ε ≤ ℓ
log log n .176

Recall for the above to be true we require z > z0. Note z = C log n, for z > z0 for177

sufficiently large n. If n is sufficiently large and ℓ ≥ c log5 n ≥ c log5−ε n log log n, then178

φ(n, ℓ) ≥ ℓ
4n φ(n). Thus, for all n and ℓ ≥ c log5 n, φ(n, ℓ) = Ω(ℓ φ(n)

n ).179

Case 2. ℓ > c log n.180

Observe that for all ℓ ≤ n, φ(n, ℓ) ≥ 1 + π(ℓ) − ω(n). This is because the primes no larger181

than ℓ are relatively prime to n if it is not a factor of n, and 1 is also relatively prime to n.182

We show there exists a constant c such that φ(n, ℓ) = Ω( ℓ
log ℓ ) for ℓ ≥ c log n, by showing183

1
2 π(ℓ) ≥ ω(n). There exists constant c1, c2 such that π(ℓ) ≥ c1

ℓ
log ℓ and ω(n) ≤ c2

log n
log log n .184

Therefore, we want some ℓ, such that c1
2

ℓ
log ℓ ≥ c2

log n
log log n . The desired relation holds as long185

as ℓ ≥ c log n for some sufficiently large c.186

The constant c in two parts of the proof might be different, we pick the larger of the two187

to be the one in the theorem. ◀188

As a corollary, we prove a density theorem.189

▶ Theorem 4. There exists a constant c, such that for any n, and a divisor d of n, if190

ℓ
c log5 n

≥ d, then each element in Zn,d is covered Ω( n
ℓ φ(n)) times by Sℓ(Z∗

n).191

Proof. By Theorem 2, the number of segments in Sℓ(Z∗
n) covering some fixed element in192

Zn,d is φ(n/d,ℓ/d)
φ(n/d) φ(n). As long as ℓ is not too small, φ(n, ℓ) = Ω( ℓ

n φ(n)). In particular, by193

Theorem 3, if ⌊ℓ/d⌋ ≥ c log5(n/d), we have φ(n/d, ℓ/d)/φ(n/d) = Ω( ℓ
n ). Therefore, each194

element in Zn,d is covered Ω( ℓ
n φ(n)) times. ◀195

3.2 Large divisor with small divisor sum196

▶ Theorem 5. If r = nO( 1
log log log n ), then there exists m|n, such that m ≥ r, d(m) = rO( 1

log log r )
197

and σ(m) = O(m).198

Proof. If there is a single prime p, such that pe|n and pe ≥ r, then we pick m = pe′ , where199

e′ is the smallest integer such that pe′ ≥ r. One can see d(m) = e′ = O(log r) = rO( 1
log log r ),200

also φ(m) = m(1 − 1
p ) ≥ m

2 , since φ(m)σ(m) ≤ m2 we are done.201
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Otherwise, we write n =
∏k

i=1 pei
i , where each pi is a distinct prime number. The prime202

pi are ordered by the weight wi = eipi log pi in decreasing order. That is wi ≥ wi+1 for all i.203

Let j be the smallest number such that
∏j

i=1 pei
i ≥ r. Let m =

∏j
i=1 pei

i .204

First, we show d(m) is small. Let m′ = m/p
ej

j . One can see that m′ < r and p
ej

j < r. So205

ej = O(log r), and206

d(m) ≤ (ej + 1)d(m′) = O(log r)d(m′) = rO( 1
log log r ).207

To show that σ(m) = O(m), we show φ(m) = Θ(m). Indeed, by σ(m) ≤ m2

φ(m) , we obtain208

σ(m) = O(m). For simplicity, it is easier to work with sum instead of products, so we take209

logarithm of everything and define t = log n. By definition, log r = O( log n
log log log n ) = O( t

log log t )210

and
∑k

i=1 ei log pi = t.211

Note j is the smallest number such that
∑j

i=1 ei log pi ≥ log r. Because there is no prime212

p such that pe|n and pe ≥ r, we also have
∑j

i=1 ei log pi < 2 log r = O( t
log log t ).213

Now, consider e′
1, . . . , e′

k, such that the following holds.214 ∑j
i=1 ei log pi =

∑j
i=1 e′

i log pi, and e′
ipi log pi = c1 for some c1, when 1 ≤ i ≤ j,215 ∑k

i=j+1 ei log pi =
∑n

i=j+1 e′
i log pi, and e′

ipi log pi = c2 for some c2, where j + 1 ≤ i ≤ k.216

Note c1 and c2 can be interpreted as weighted averages over wi. Indeed, consider217

sequences x1, . . . , xn and y1, . . . , yn, such that
∑

i xi =
∑

i yi. If for some non-negative218

a1, . . . , an, we have aiyi = c for all i, j, then c ≤ maxi aixi. Indeed, there exists xj ≥ yj ,219

so maxi aixi ≥ ajxj ≥ ajyj = c. Similarly, c ≥ mini aixi. This shows c1 ≥ c2, because220

c2 ≤ maxk
i=j+1 wi = wj+1 ≤ wj = minj

i=1 wi ≤ c1.221

We first give a lower bound of c2.222 ∑k
i=j+1

c2
pi

=
∑k

i=j+1 e′
i log pi =

∑k
i=j+1 ei log pi ≥ t − O( t

log log t ) = Ω(t).223 ∑k
i=j+1

c2
pi

≤ c2
∑k

i=1
1
pi

≤ c2
∑

p prime,p=O(t)
1
p = c2O(log log t).224

This shows c2O(log log t) = Ω(t), or c2 = Ω( t
log log t ).225

Since c1 ≥ c2,
∑j

i=1
1
pi

=
∑j

i=1
e′

i log pi

c1
= O( t

log log t )
c1

≤ O( t
log log t )

c2
= O( t

log log t )
Ω( t

log log t ) = O(1).226

Note φ(m) = m
∏j

i=1(1 − 1
pi

). Because −2x < log(1 − x) < −x for 0 ≤ x ≤ 1/2, so227 ∑j
i=1 log(1− 1

pi
) ≥ −2

∑j
i=1

1
pi

= −O(1). Hence
∏j

i=1(1− 1
pi

) = Ω(1), and φ(m) = Ω(m). ◀228

A interesting number theoretical result is the direct corollary of Theorem 5.229

▶ Corollary 6. Let n be a positive integer, there exists a m|n such that m = nΩ( 1
log log log n )

230

and σ(m) = O(m).231

3.3 Covering of Dn232

Recall that (Dn, ⊙) is the semigroup over the set of divisors of n, and the operation ⊙ is defined233

as a ⊙ b = gcd(ab, n). Throughout this section, we fix a s ≤ n, and let A := Dn ∩ [s]. We are234

interested in finding s-coverings of Dn, that is, finding B ⊆ Dn such that (Dn ∩ [s]) ⊙ B = Dn.235

As we mentioned previously, the main goal is to show that a good s-covering of Dn lifts to a236

ℓ-covering of Zn of small size. The criteria for a good s-covering B is two folds: the size of B237

should be small (O( n
s

1
logc n )), and the reciprocal sum of B, namely

∑
d∈B

1
d should also be238

small (O(1)). However, one can’t hope to optimize both at the same time. Fortunately, for239

our application, we only need the reciprocal sum to be small when s is small.240

To obtain a s-covering of Dn, there are two natural choices of B.241

1. Let B = (Dn \ [s]) ∪ {1}. If d ≤ s, then d = d · 1. Otherwise, if d > s, then d = 1 · d.242

Hence, A ⊙ B = Dn.243
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2. Let B = Dm for some m|n and m ≥ n
s . We also have A ⊙ B = Dn. Indeed, consider244

divisor d of n, let d1 = gcd(m, d) ∈ B, and d2 = d/d1. d2| n
m ≤ s, so d2 ∈ A.245

These two choices is sufficient for us to prove the following lemma. The lemma basically246

states there is an s-covering of Dn fits out requirement as long as s is not too large.247

▶ Lemma 7. Let δ be a function such that δ(n) = Ω(log n) and δ(n) = O(logc′
n) for some248

constant c′. There exists a constant c, such that for every s ≤ n
δ(n) , we can find B ⊂ Dn such249

that (Dn ∩ [s]) ⊙ B = Dn, |B| = O( n log n
sδ(n) ) and250

1. If s ∈ (0, n
c

log log n ], then
∑

d∈B
1
d = O(log log n).251

2. If s ∈ (n
c

log log n , n
δ(n) ], then

∑
d∈B

1
d = O(1).252

Proof. Let A = Dn ∩ [s]. We let B1 = (Dn \ [s]) ∪ {1}. Also, let B2 = Dm, where m|n,253

d(m) = n
s

O( 1
log log n

s
), σ(m) = O(m). Such m exists when s = n1−O( 1

log log log n ) by setting254

r = n
s in Theorem 5. Recall both A ⊙ B1 = Dn and A ⊙ B2 = Dn.255

The proof consists of 3 different cases.256

1. s ∈ (0, n
c

log log n ].257

2. s ∈ (n
c

log log n , n1− c
log log n ]258

3. s ∈ (n1− c
log log n , n

f(n) ]259

For the first two cases, we let B = B1.260

In particular, we have s ≤ n1− c
log log n , so n log n

sf(n) = O(n
c−ϵ

log log n ) for any ϵ > 0. Now if we261

pick sufficiently large c, we would have |B| = d(n) = nO( 1
log log n ) = O( n log n

sf(n) ).262

When s ∈ (0, n
c

log log n ],
∑

d∈B
1
d ≤ 1

n

∑
d|n

n
d = σ(n)/n = O(log log n). Otherwise,263

when s ∈ (n
c

log log n , n1− c
log log n ], each element in B \ {1} is at least s, so we know that264 ∑

d∈B
1
d = 1 +

∑
d∈B\{1}

1
d ≤ 1 + |B| 1

s ≤ 1 + n
O(1)

log log n

n
c

log log n
= O(1).265

Now, we consider the third case s ∈ (n1− c
log log n , n

f(n) ]. In this case we set B = B2.266

We first bound the size of B.267

|B| = (n

s
)O( 1

log log n
s

)

≤ (nf(n)
sf(n) )O( 1

log log f(n) )

≤ O( n

sf(n) )f(n)O( 1
log log f(n) )

≤ n

sf(n) (logc′
n)O( 1

log log log n )

= O(n log n

sf(n) )

268

By the choice of m, we have
∑

d∈B
1
d = σ(m)

m = O(1). ◀269

4 ℓ-covering270

In this section, we prove our bounds in f(n, ℓ), provide a quick randomized construction.271

4.1 Upper bound272

The high-level idea is to divide the problem into sub-problems of covering multiple Zn,d. Can273

we cover Zn,d for many distinct d, using only a few segments in Sℓ(Z∗
n)? We affirmatively274
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answer this question by connecting an s-covering of Dn to an ℓ-covering of Zn. Let B ⊆ Dn275

be any s-covering of Dn. For each b ∈ B, we generate a cover of all
⋃

d≤s Zn,b⊙d using276

Sℓ(Zn,b). We denote g(n, ℓ) as the size of the smallest set cover of
⋃

d|n,d≤s Zn,d using Sℓ(Z∗
n).277

We obtain that278

f(n, ℓ) ≤
∑
b∈B

g(n

b
, ℓ).279

For the remainder of this section, we define s = max
(

1, ℓ
c log5 n

)
, where c is the constant280

present in Theorem 3. We provide a bound for g(n, ℓ), leveraging the fact that each element281

is covered multiple times, and Theorem 1, which is the upper bound from the combinatorial282

set cover theorem.283

▶ Theorem 8. There exists a constant c > 0, such that284

g(n, ℓ) =
{

O( n
ℓ log ℓ) if ℓ ≥ c log5 n,

O( φ(n)
ℓ log2 ℓ) if c log5 n > ℓ ≥ c log n.

285

Proof. By Theorem 2, The number of times an element in Zn,d get covered by a segment in286

Sℓ(Z∗
n) is φ( n

d ,⌊ ℓ
d ⌋)

φ( n
d ) φ(n). We consider 2 cases.287

Case 1. ℓ > c log5 n. Consider a d|n and d ≤ s. Then ⌊ ℓ
d ⌋ = Ω(log5 n). Hence,288

φ(n
d , ⌊ ℓ

d ⌋) = Ω(⌊ ℓ
d ⌋
n
d

φ(n
d )) = Ω( ℓ

n φ(n
d )) by Theorem 3. Therefore, each element in Zn,d is289

covered by φ( n
d ,⌊ ℓ

d ⌋)
φ( n

d ) φ(n) = Ω( ℓ
n φ(n)) segments in Sℓ(Z∗

n). This is true for all element in290 ⋃
d|n,d≤s Zn,d.291

By Theorem 1, there exists a cover of size292

g(n, ℓ) = O

(
φ(n) log ℓ

ℓ
n φ(n)

)
= O

(n

ℓ
log ℓ

)
.293

Case 2. If c log5 n > ℓ ≥ c log n, then s = 1, and we try to cover Z∗
n with Sℓ(Z∗

n). Each294

element is covered by φ(n,ℓ)
φ(n) φ(n) = Ω( ℓ

log ℓ ) segments. By Theorem 1, we have295

g(n, ℓ) = O

(
φ(n) log ℓ

ℓ
log ℓ

)
= O

(
φ(n)

ℓ
log2 ℓ

)
.296

◀297

We are ready to prove our main theorem.298

▶ Theorem 9 (Main). There exists an ℓ-covering set of size O(n
ℓ log n) for all n, ℓ where299

ℓ < n.300

Proof. Let B be the s-covering of Dn in Lemma 7 with δ(n) = c log5 n. Observe s = ℓ
δ(n)301

and |B| = O( n
ℓ log n).302

Case 1303

If ℓ < c log n, then we are done, since f(n, ℓ) ≤ n = O( n
ℓ log n).304
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Case 2305

Consider c log n ≤ ℓ ≤ c log5 n.306

f(n, ℓ) ≤
∑
d∈B

g(n

d
, ℓ)

≤
∑
d∈B

(
φ(n/d) (log ℓ)2

ℓ
+ 1
)

≤ O(n

ℓ
log2 ℓ) + |B|

= O
(n

ℓ
(log log n)2

)
+ O

(n

ℓ
log n

)
= O

(n

ℓ
log n

)
307

Case 3308

Consider ℓ > c log5 n.309

f(n, ℓ) ≤
∑
d∈B

g(n

d
, ℓ)

≤
∑
d∈B

O

(
n

d

log ℓ

ℓ

)
+ 1

= |B| + O

(
n log ℓ

ℓ

)∑
d∈B

1
d

= O
(n

ℓ
log n

)
+ O

(
n log ℓ

ℓ

)∑
d∈B

1
d

310

Hence, we are concerned with the last term. We further separate into 2 cases:311

Case 3.1312

If ℓ < n
c

log log n , then
∑

d∈B
1
d = O(log log n), and313

O

(
n log ℓ

ℓ

∑
d∈B

1
d

)
= O

(
n log ℓ

ℓ
log log n

)

= O

(
n log n

log log n log log n

ℓ

)

= O

(
n log n

ℓ

)
.

314

Case 3.2315

ℓ ≥ n
c

log log n , then
∑

d∈B
1
d = O(1). Hence,316

O

(
n log ℓ

ℓ

∑
d∈B

1
d

)
= O

(
n log ℓ

ℓ

)
= O

(
n log n

ℓ

)
.317

In all cases, we obtain an ℓ-covering of O( n log n
ℓ ) size. ◀318
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The derived upper bound naturally gives rise to a construction algorithm. Firstly, we319

find the prime factorization in no(1) time, and then compute the desired B in no(1) time.320

Subsequently, we cover each
⋃

d|n/b,d≤s Zn/b,d using Sℓ(Z∗
n/b) for each b ∈ B. If we apply the321

linear time greedy algorithm for set cover, then the running time becomes O(nℓ) [14].322

A randomized constructive variant of Theorem 1 can also be employed.323

▶ Theorem 10. Let there be t sets, each element of the size n universe is covered by at least324

b of the sets, then there exists subset of O( t
b log n) size that covers the universe, and can be325

found with high probability using a Monte Carlo algorithm that runs in Õ( t
b ) time.326

Sketch. The condition demonstrates that the standard linear programming relaxation of327

set cover provides a feasible solution, where every indicator variable for each set holds the328

value of 1
b . The conventional randomized rounding algorithm, which independently selects329

each set with a probability equal to 1
b for Θ(log n) rounds, will cover the universe with high330

probability [20]. This can be simulated by independently sampling sets of size t
b for Θ(log n)331

rounds, a process that can be completed in Õ( t
b ) time. ◀332

The main discrepancy between Theorem 10 and Theorem 1 lies in the coverage size. Let333

a represent the maximum size of each set, the randomized algorithm has a higher factor of334

log n rather than log a. If we incorporate more sophisticated rounding techniques, we can335

once again attain log a [18]. However, the algorithm will slow down. The alteration to log n336

has implications for the output size. Specifically, following the proof of Theorem 9, there will337

be an additional log log n factor in the size of the cover.338

The analysis mirrors the previous one, enabling us to derive the following theorem.339

▶ Theorem 11. There exists a constant c, such that a O(n
ℓ log n) size ℓ-covering of Zn340

can be found in Õ(n
ℓ ) + no(1) time with high probability if ℓ < n

c
log log n , and the size is341

O( n
ℓ log n log log n) otherwise.342

4.2 Lower bound343

We note that our upper bound is optimal through the combinatorial set covering property344

(Theorem 1). The log n factor cannot be avoided when ℓ = nΩ(1). To obtain a superior345

bound, stronger number theoretical properties must be leveraged, as was the case when n is a346

prime [5].347

We demonstrate that it is improbable to acquire significantly stronger bounds when ℓ348

is small. For an infinite number of (n, ℓ) pairs, our bound is merely a log log n factor away349

from the lower bound.350

▶ Theorem 12. There exists a constant c > 0, for which there are an infinite number of n, ℓ351

pairs where f(n, ℓ) ≥ c n
ℓ

log n
log log n .352

Proof. Let n be the product of the smallest k prime numbers, then k = Θ( log n
log log n ). Let ℓ be353

the smallest number where π(ℓ) = k. Given that π(ℓ) = Θ( ℓ
log ℓ ), we know that ℓ = Θ(log n).354

Note that φ(n, ℓ) = 1. Indeed, every number ≤ ℓ except 1 has a common factor with355

n. To cover all elements in Z∗
n ⊂ Zn, the ℓ-covering size must be at least φ(n)

φ(n,ℓ) = φ(n) =356

Ω( n
log log n ) = Ω( n

ℓ
log n

log log n ). ◀357

4.3 Application: Simplifying modular subset sum computation358

We demonstrate how our improved bound of ℓ-covering can be advantageous in algorithm359

design. ℓ-covering offers a natural divide-and-conquer algorithm; by partitioning elements360
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into segments in the ℓ-covering, solving the subproblem, and then combining them together.361

Such an approach was employed in modular subset sum computations. The modular subset362

sum problem is defined as follows: Given S ⊂ Zn with |S| = m, output all values i such that363 ∑
x∈T x = i for some T ⊂ S.364

To solve the modular subset sum, the following theorem was established:365

▶ Theorem 13 ([14, Lemma 5.2]). Let S ⊂ Zn be a set of size m, and it can be covered366

by k segments of length ℓ, then the subset sums of S can be computed in O(kn log n +367

mℓ log(mℓ) log m) time.368

Utilizing the previous ℓ-covering bound of O( n1+o(1)

ℓ ), a direct application would lead to369

an O(
√

mn1+o(1)) time algorithm. Instead, in [14], using a much more intricate recursive370

partitioning, coupled with a second-level application of Theorem 13, Koiliaris and Xu obtained371

an O(
√

mn log2 n) time algorithm.372

Armed with our improved bound on ℓ-covering, we know k = O(n
ℓ log n). Therefore,373

setting ℓ = n√
m

, we directly obtain a running time of O(
√

mn log2 n) from Theorem 13,374

matching the significantly more complicated algorithm.375

It’s worth noting that Õ(n) time algorithms that completely avoid ℓ-covering have been376

discovered [4, 10, 2, 1, 16]. However, we continue to believe that ℓ-covering can provide377

advantages in other algorithmic applications.378
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Supposed that451

1.|Rd| ≤ γ(d) for any squarefree d composed of primes of P;452

2.there exists a constant A1 ≥ 1 such that453

0 ≤ γ(p)
p

≤ 1 − 1
A1

;454

455

3.there exists a constant κ ≥ 0 and A2 ≥ 1 such that456 ∑
w≤p<z

γ(p) log p

p
≤ κ log z

w
+ A2 if 2 ≤ w ≤ z.457

4.Let b be a positive integer and let λ be a real number satisfying458

0 ≤ λe1+λ ≤ 1.459

Then460

S(A, P, z) ≥XW (z){1 − 2λ2be2λ

1 − λ2e2+2λ
exp((2b + 2) c1

λ log z
)}

+ O(z2b−1+ 2.01
e2λ/κ−1 ),

461

where462

c1 := A2

2 {1 + A1(κ + A2

log 2)}.463

464

465

B Proof of Theorem 2466

We first show a simple lemma.467

▶ Lemma 15. Let y ∈ Z∗
n, and B ⊂ Z∗

n. The number of x ∈ Z∗
dn such that xb ≡ y (mod n),468

and b ∈ B is |B| φ(dn)
φ(n) .469

Proof. Indeed, the theorem is equivalent to finding the number of solutions to x ≡ yb−1
470

(mod n) where b ∈ B. For a fixed b, let z = yb−1. We are asking for the number of x ∈ Z∗
dn471

such that x ≡ z (mod n). Consider the set A = {z + kn | 0 ≤ k ≤ d − 1}. Let Pn be the472

set of distinct prime factors of n. Since gcd(z, n) = 1, no element in Pn can divide any473

element in A. Let Pdn \ Pn = P ′
d ⊆ Pd. Let q be the product of some elements in P ′

d, q|d,474

(q, n) = 1. Let Aq = {a | a ∈ A, q|a}. Note that q|z + kn ⇔ k ≡ −zn−1 (mod q), and given475

0 ≤ k ≤ d − 1 and q|d, it follows that |Aq| = d
q .476

We can use the principle of inclusion-exclusion to count the elements a ∈ A such that477

gcd(a, dn) = 1:478

|P ′
d|∑

i=0
(−1)i

∑
S⊆P ′

d
,|S|=i

|A∏
p∈S

p| =
|P ′

d|∑
i=0

(−1)i
∑

S⊆P ′
d

,|S|=i

d∏
p∈S p

= d
∏

p∈P ′
d

(1 − 1
p

) = φ(dn)
φ(n) .479

Since all the solution sets of x for different b ∈ B are disjoint, we find that the total number480

of solutions over all B is |B| φ(dn)
φ(n) . ◀481

Now we are ready to prove the theorem. Since x ∈ Z∗
n, we observe that xb ≡ y (mod n)482

if and only if d|b, x b
d ≡ y

d (mod n
d ), and b

d ≤
⌊

ℓ
d

⌋
. We can then apply Lemma 15 and obtain483

that the number of solutions is φ(n/d, ⌊ℓ/d⌋)φ(n)/φ(n/d).484
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